in

Invasions of an obligate asexual daphnid species support the nearly neutral theory

[adace-ad id="91168"]
  • Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236 (1979).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, W.-H., Wu, C.-I. & Luo, C.-C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2, 150–174 (1985).

    PubMed 

    Google Scholar 

  • Bielawski, J. P. & Yang, Z. Positive and negative selection in the DAZ gene family. Mol. Biol. Evol. 18, 523–529 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Evol. Syst. 23, 263–286 (1992).

    Article 

    Google Scholar 

  • Johnson, K. P. & Seger, J. Elevated rates of nonsynonymous substitution in island birds. Mol. Biol. Evol. 18, 874–881 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Woolfit, M. & Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 272, 2277–2282 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, L., Hardy, N. B., Okusu, A. & Normark, B. B. Large population size predicts the distribution of asexuality in scale insects. Evolution 67, 196–206 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Weber, C. C., Nabholz, B., Romiguier, J. & Ellegren, H. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol. 15, 542 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brandt, A. et al. Effective purifying selection in ancient asexual oribatid mites. Nat. Commun. 8, 873 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Figuet, E. et al. Life history traits, protein evolution, and the nearly neutral theory in amniotes. Mol. Biol. Evol. 33(6), 1517–1527 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saclier, N. et al. Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Mol. Biol. Evol. 35, 2900–2912 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hebert, P. D. The Daphnia of North America: An Illustrated Fauna (on CD-ROM) (CyberNatural Software, Guelph, 1995).

    Google Scholar 

  • Colbourne, J. K. et al. Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol. J. Linn. Soc. 65, 347–365 (1998).

    Google Scholar 

  • Crease, T. J., Omilian, A. R., Costanzo, K. S. & Taylor, D. J. Transcontinental phylogeography of the Daphnia pulex species complex. PLoS ONE 7, e46620 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mergeay, J., Verschuren, D. & De Meester, L. Cryptic invasion and dispersal of an American Daphnia in East Africa. Limnol. Oceanogr. 50, 1278–1283 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ma, X. et al. Lineage diversity and reproductive modes of the Daphnia pulex group in Chinese lakes and reservoirs. Mol. Phylogenet. Evol. 130, 424–433 (2019).

    PubMed 
    Article 

    Google Scholar 

  • So, M. et al. Invasion and molecular evolution of Daphnia pulex in Japan. Limnol. Oceanogr. 60, 1129–1138 (2015).

    ADS 
    Article 

    Google Scholar 

  • Duggan, I. C. et al. Identifying invertebrate invasions using morphological and molecular analyses: North American Daphniapulex’ in New Zealand fresh waters. Aquat. Invasions 7, 585–590 (2012).

    Article 

    Google Scholar 

  • Ye, Z. et al. The rapid, mass invasion of New Zealand by North American Daphniapulex”. Limnol. Oceanogr. 66, 2673–2683 (2021).

    ADS 
    Article 

    Google Scholar 

  • Paland, S., Colbourne, J. K. & Lynch, M. Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59, 800–813 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Paland, S. & Lynch, M. Transitions to asexuality result in excess amino acid substitutions. Science 311, 990–992 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Johnson, S. G. & Howard, R. S. Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution 61, 2728–2735 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Neiman, M. et al. Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol. Biol. Evol. 27, 954–963 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Henry, L., Schwander, T. & Crespi, B. J. Deleterious mutation accumulation in asexual Timema stick insects. Mol. Biol. Evol. 29, 401–408 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tucker, A. E. et al. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc. Natl. Acad. Sci. 110, 15740–15745 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science 331, 555–561 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ye, Z. et al. A new reference genome assembly for the microcrustacean Daphnia pulex. G3 (Bethesda) 7, 1405–1416 (2017).

    CAS 
    Article 

    Google Scholar 

  • Keith, N. et al. High mutational rates of large-scale duplication and deletion in Daphnia pulex. Genome Res. 26, 60–69 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hall, D. J. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45, 94–112 (1964).

    Article 

    Google Scholar 

  • McCauley, E., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Ecology 4, 505–514 (1990).

    Google Scholar 

  • Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zheng, Y., Peng, R., Kuro-o, M. & Zeng, X. Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: A case study of salamanders (Order Caudata). Mol. Biol. Evol. 28, 2521–2535 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zaret, T. M. Predation and Freshwater Communities (Yale University Press, New Haven, 1980).

    Google Scholar 

  • Lynch, M. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24, 253–272 (1979).

    ADS 
    Article 

    Google Scholar 

  • Mills, E. L. & Forney, J. L. Impact on Daphnia pulex of predation by young yellow perch in Oneida Lake, New York. Trans. Am. Fish. Soc. 112(2A), 154–161 (1983).

    Article 

    Google Scholar 

  • Craddock, D. R. Effects of increased water temperature on Daphnia pulex. Fish. Bull. 74, 403–408 (1976).

    Google Scholar 

  • Maruoka, N. & Urabe, J. Inter and intraspecific competitive abilities and the distribution ranges of two Daphnia species in Eurasian continental islands. Popul. Ecol. 62, 353–363 (2020).

    Article 

    Google Scholar 

  • Dodson, S. I. & Hanazato, T. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ. Health Perspect. 103(Suppl 4), 7–11 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Claska, M. E. & Gilbert, J. J. The effect of temperature on the response of Daphnia to toxic cyanobacteria. Freshw. Biol. 39, 221–232 (1998).

    Article 

    Google Scholar 

  • Bast, J. et al. Consequences of asexuality in natural populations: Insights from stick insects. Mol. Biol. Evol. 35, 1668–1677 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hartfield, M. Evolutionary genetic consequences of facultative sex and outcrossing. J Evol Biol 29, 5–22 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hörandl, E. et al. Genome evolution of asexual organisms and the paradox of sex in eukaryotes. In Evolutionary Biology—A Transdisciplinary Approach (ed. Pontarotti, P.) (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-57246-4_7.

    Chapter 

    Google Scholar 

  • Lynch, M., Bürger, R., Butcher, D. & Gabriel, W. The mutational meltdown in asexual populations. J. Hered. 84, 339–344 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gordo, I. & Charlesworth, B. The degeneration of asexual haploid populations and the speed of Muller’s ratchet. Genetics 154, 1379–1387 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    ADS 
    Article 

    Google Scholar 

  • McDonald, C. P., Rover, J. A., Stets, E. G. & Striegl, R. G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 57, 597–606 (2012).

    ADS 
    Article 

    Google Scholar 

  • De Meester, L., Góme, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol. 23, 121–135 (2002).

    ADS 
    Article 

    Google Scholar 

  • Fukami, T., Bezemer, T. M., Mortimer, S. R. & Van Der Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).

    Article 

    Google Scholar 

  • Makino, T. & Kawata, M. Invasive invertebrates associated with highly duplicated gene content. Mol. Ecol. 28, 1652–1663 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. Lond. B Biol. Sci. 279, 5048–5057 (2012).

    Google Scholar 

  • Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rocha, E. P. C. Neutral theory, microbial practice: Challenges in bacterial population genetics. Mol. Biol. Evol. 35, 1338–1347 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tanabe, A. S. Kakusan4 and Aminosan: Two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 11, 914–921 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tian, X., Ohtsuki, H. & Urabe, J. Evolution of asexual Daphnia pulex in Japan: Variations and covariations of the digestive, morphological and life history traits. BMC Evol. Biol. 19, 122 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, Y. et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lee, T. H. et al. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019). https://www.R-project.org/


  • Source: Ecology - nature.com

    Absent legislative victory, the president can still meet US climate goals

    Spatiotemporal variation characteristics of livestock manure nutrient in the soil environment of the Yangtze River Delta from 1980 to 2018