in

Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis

  • George, T. S. et al. Understanding the genetic control and physiological traits associated with rhizosheath production in barley (Hordeum vulgare). New Phytol. 203, 195–205 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Delhaize, E., Rathjen, T. M. & Cavanagh, C. R. The genetics of rhizosheath size in a multiparent mapping population of wheat. J. Exp. Bot. 66, 4527–4536 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duell, R. W. & Peacock, G. R. Rhizosheaths on mesophytic grasses. Crop Sci. 25, 880–883 (1985).

    Google Scholar 

  • Shane, M. W. et al. Summer dormancy and winter growth: Root survival strategy in a perennial monocotyledon. New Phytol. 183, 1085–1096 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Shane, M. W., McCully, M. E., Canny, M. J. & Pate, J. S. Development and persistence of sandsheaths of Lyginia barbata (Restionaceae): Relation to root structural development and longevity. Ann. Bot. 108, 1307–1322 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sprent, J. I. Adherence of sand particles to soybean roots under water stress. New Phytol. 74, 461–463 (1975).

    Google Scholar 

  • Unno, Y., Okubo, K., Wasaki, J., Shinano, T. & Osaki, M. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ. Microbiol. 7, 396–404 (2005).

    PubMed 

    Google Scholar 

  • McCully, M. E. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev. Plant. Phys. 50, 695–718 (2003).

    Google Scholar 

  • Volkens, G. Die Flora der ægyptisch-arabischen Wuste auf Grundlage anatomisch-physiologischer Forschungen 156 (Gerbruger Borntraeger, 1887).

    Google Scholar 

  • Bailey, C. & Scholes, M. Rhizosheath occurrence in South African grasses. S Afr J Bot 63, 484–490 (1997).

    Google Scholar 

  • Price, S. R. The roots of some north African desert-grasses. New Phytol. 10, 328–340 (1911).

    Google Scholar 

  • Young, I. M. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembly). New Phytol. 130, 125–39 (1995).

    Google Scholar 

  • Pate, J.S., & Dixon, K.W. Convergence and Divergence in the Southwestern Australian Flora in Adaptations of Roots to Limited Availability of Water and Nutrients, Fire and Heat Stress, New South Wales, 1966;249–58.

  • Shane, M. W. et al. Seasonal water relations of Lyginia barbata (southern rush) in relation to root xylem development and summer dormancy of root apices. New Phytol. 185, 1025–37 (2010).

    PubMed 

    Google Scholar 

  • Benard, P., Kroener, E., Vontobel, P., Kaestner, A. & Carminati, A. Water percolation through the root-soil interface. Adv. Water Res. 95, 190–198 (2016).

    Google Scholar 

  • Lynch, J. P. Roots of the second green revolution. Aust. J. Bot. 55, 493–512 (2007).

    Google Scholar 

  • Brown, L. K., George, T. S., Neugebauer, K. & White, P. J. The rhizosheath—A potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant. Soil 418(1–2), 115–128 (2017).

    CAS 

    Google Scholar 

  • Zhang, R., Vivanco, J. M. & Shen, Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr. Opin. Microbiol. 37, 8 (2017).

    PubMed 

    Google Scholar 

  • Spaepen, S., Bossuyt, S., Vanderleyden, J., Engelen, K. & Marchal, K. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol. 201, 66 (2014).

    Google Scholar 

  • Vries, F. T. D., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 66 (2020).

    Google Scholar 

  • York, L. M., Carminati, A., Mooney, S. J., Ritz, K. & Bennett, M. J. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 67(12), 3629–3643 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–5 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneijderberg, M. et al. Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME J. 14(10), 2433–2448 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10(1), 57–59 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2100 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21(3), 494–504 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 66, 5261–67 (2007).

    ADS 

    Google Scholar 

  • Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10(10), 996–998 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J. & Glöckner, F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 41(D1), 66 (2012).

    Google Scholar 

  • Clark, F. E. Soil microorganisms and plant roots. Adv. Agron. 1, 241–288 (1949).

    CAS 

    Google Scholar 

  • Cook, F. D. & Lochhead, A. G. Growth factor relationships of soil microorganisms as affected by proxmity to the plant root. Can. J. Microbiol. 5, 323–334 (1959).

    CAS 
    PubMed 

    Google Scholar 

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant. Biol. 64(1), 807–838 (2012).

    Google Scholar 

  • Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112(8), 911–920 (2015).

    ADS 

    Google Scholar 

  • Zhang, J. Y. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. Sci. Bus. Biotechnol. 37(6), 1–13 (2019).

    Google Scholar 

  • Fu, Z. Q. et al. Mechanism of controlling cotton Verticillium wilt with endophytic bacterium 73a. Jiangsu J Agric. Sci. 15(4), 211–15 (1999).

    Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M. & Pieterse, C. M. J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453–83 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Wees, S. C. M. V., Pieteerse, C. M. J., Trijssenaar, A. V., Westende, Y. A. V. & Loon, L. C. V. Differental induction of systemic resistance in Arabidopsis by biocontrol bacterial. Mol. Plant-Microbe Interact. 10, 716–24 (1997).

    PubMed 

    Google Scholar 

  • Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).

    CAS 

    Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Vander, P. W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11(11), 789–799 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant. Sci. 17, 478–486 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 9, 2349–2359 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, S., Nuccio, E. E., Shi, Z. J., He, Z. & Firestone, M. K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).

    PubMed 

    Google Scholar 

  • Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant–microbe–soil interactions in the rhizosphere: An evolutionary perspective. Plant. Soil 321, 83–115 (2009).

    CAS 

    Google Scholar 

  • Zhang, Y., Ruyter-Spira, C. & Bouwmeester, H. J. Engineering the plant rhizosphere. Curr. Opin. Biotechnol. 32, 136–142 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Dessaux, Y., Grandclement, C. & Faure, D. Engineering the rhizosphere. Trends Plant. Sci. 21, 266–278 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Bergmann, D., Zehfus, M., Zierer, L., Smith, B. & Gabel, M. Grass Rhizosheaths: Associated bacterial communities and potential for nitrogen fixation. Western N. Am. Nat. 69(1), 105–114 (2009).

    Google Scholar 

  • Wullstein, L. H. Nitrogen fixation (acetylene reduction) associated with rhizosheaths of Indian rice–grass used in stabilization of the Slick Rock, Colorado tailings pile. J. Range Manag. 33, 204–206 (1980).

    Google Scholar 

  • Wullstein, L. H., Bruening, M. L. & Bollen, W. B. Fixation associated with sand grain root sheaths (rhizosheaths) of certain Xeric grasses. Physiol. Plant. 46, 1–4 (1979).

    CAS 

    Google Scholar 

  • Buckley, R. Sand rhizosheath of an arid zone grass. Plant. Soil 66, 417–421 (1982).

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise