George, T. S. et al. Understanding the genetic control and physiological traits associated with rhizosheath production in barley (Hordeum vulgare). New Phytol. 203, 195–205 (2014).
Google Scholar
Delhaize, E., Rathjen, T. M. & Cavanagh, C. R. The genetics of rhizosheath size in a multiparent mapping population of wheat. J. Exp. Bot. 66, 4527–4536 (2015).
Google Scholar
Duell, R. W. & Peacock, G. R. Rhizosheaths on mesophytic grasses. Crop Sci. 25, 880–883 (1985).
Shane, M. W. et al. Summer dormancy and winter growth: Root survival strategy in a perennial monocotyledon. New Phytol. 183, 1085–1096 (2009).
Google Scholar
Shane, M. W., McCully, M. E., Canny, M. J. & Pate, J. S. Development and persistence of sandsheaths of Lyginia barbata (Restionaceae): Relation to root structural development and longevity. Ann. Bot. 108, 1307–1322 (2011).
Google Scholar
Sprent, J. I. Adherence of sand particles to soybean roots under water stress. New Phytol. 74, 461–463 (1975).
Unno, Y., Okubo, K., Wasaki, J., Shinano, T. & Osaki, M. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ. Microbiol. 7, 396–404 (2005).
Google Scholar
McCully, M. E. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev. Plant. Phys. 50, 695–718 (2003).
Volkens, G. Die Flora der ægyptisch-arabischen Wuste auf Grundlage anatomisch-physiologischer Forschungen 156 (Gerbruger Borntraeger, 1887).
Bailey, C. & Scholes, M. Rhizosheath occurrence in South African grasses. S Afr J Bot 63, 484–490 (1997).
Price, S. R. The roots of some north African desert-grasses. New Phytol. 10, 328–340 (1911).
Young, I. M. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembly). New Phytol. 130, 125–39 (1995).
Pate, J.S., & Dixon, K.W. Convergence and Divergence in the Southwestern Australian Flora in Adaptations of Roots to Limited Availability of Water and Nutrients, Fire and Heat Stress, New South Wales, 1966;249–58.
Shane, M. W. et al. Seasonal water relations of Lyginia barbata (southern rush) in relation to root xylem development and summer dormancy of root apices. New Phytol. 185, 1025–37 (2010).
Google Scholar
Benard, P., Kroener, E., Vontobel, P., Kaestner, A. & Carminati, A. Water percolation through the root-soil interface. Adv. Water Res. 95, 190–198 (2016).
Lynch, J. P. Roots of the second green revolution. Aust. J. Bot. 55, 493–512 (2007).
Brown, L. K., George, T. S., Neugebauer, K. & White, P. J. The rhizosheath—A potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant. Soil 418(1–2), 115–128 (2017).
Google Scholar
Zhang, R., Vivanco, J. M. & Shen, Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr. Opin. Microbiol. 37, 8 (2017).
Google Scholar
Spaepen, S., Bossuyt, S., Vanderleyden, J., Engelen, K. & Marchal, K. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol. 201, 66 (2014).
Vries, F. T. D., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 66 (2020).
York, L. M., Carminati, A., Mooney, S. J., Ritz, K. & Bennett, M. J. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 67(12), 3629–3643 (2016).
Google Scholar
Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–5 (2012).
Google Scholar
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
Google Scholar
Schneijderberg, M. et al. Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME J. 14(10), 2433–2448 (2020).
Google Scholar
Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).
Google Scholar
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10(1), 57–59 (2013).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).
Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2100 (2011).
Google Scholar
Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21(3), 494–504 (2011).
Google Scholar
Wang, Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 66, 5261–67 (2007).
Google Scholar
Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10(10), 996–998 (2013).
Google Scholar
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J. & Glöckner, F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 41(D1), 66 (2012).
Clark, F. E. Soil microorganisms and plant roots. Adv. Agron. 1, 241–288 (1949).
Google Scholar
Cook, F. D. & Lochhead, A. G. Growth factor relationships of soil microorganisms as affected by proxmity to the plant root. Can. J. Microbiol. 5, 323–334 (1959).
Google Scholar
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant. Biol. 64(1), 807–838 (2012).
Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112(8), 911–920 (2015).
Google Scholar
Zhang, J. Y. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. Sci. Bus. Biotechnol. 37(6), 1–13 (2019).
Fu, Z. Q. et al. Mechanism of controlling cotton Verticillium wilt with endophytic bacterium 73a. Jiangsu J Agric. Sci. 15(4), 211–15 (1999).
Van Loon, L. C., Bakker, P. A. H. M. & Pieterse, C. M. J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453–83 (1998).
Google Scholar
Wees, S. C. M. V., Pieteerse, C. M. J., Trijssenaar, A. V., Westende, Y. A. V. & Loon, L. C. V. Differental induction of systemic resistance in Arabidopsis by biocontrol bacterial. Mol. Plant-Microbe Interact. 10, 716–24 (1997).
Google Scholar
Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).
Google Scholar
Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Vander, P. W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11(11), 789–799 (2013).
Google Scholar
Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant. Sci. 17, 478–486 (2012).
Google Scholar
Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 9, 2349–2359 (2015).
Google Scholar
Shi, S., Nuccio, E. E., Shi, Z. J., He, Z. & Firestone, M. K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).
Google Scholar
Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant–microbe–soil interactions in the rhizosphere: An evolutionary perspective. Plant. Soil 321, 83–115 (2009).
Google Scholar
Zhang, Y., Ruyter-Spira, C. & Bouwmeester, H. J. Engineering the plant rhizosphere. Curr. Opin. Biotechnol. 32, 136–142 (2015).
Google Scholar
Dessaux, Y., Grandclement, C. & Faure, D. Engineering the rhizosphere. Trends Plant. Sci. 21, 266–278 (2016).
Google Scholar
Bergmann, D., Zehfus, M., Zierer, L., Smith, B. & Gabel, M. Grass Rhizosheaths: Associated bacterial communities and potential for nitrogen fixation. Western N. Am. Nat. 69(1), 105–114 (2009).
Wullstein, L. H. Nitrogen fixation (acetylene reduction) associated with rhizosheaths of Indian rice–grass used in stabilization of the Slick Rock, Colorado tailings pile. J. Range Manag. 33, 204–206 (1980).
Wullstein, L. H., Bruening, M. L. & Bollen, W. B. Fixation associated with sand grain root sheaths (rhizosheaths) of certain Xeric grasses. Physiol. Plant. 46, 1–4 (1979).
Google Scholar
Buckley, R. Sand rhizosheath of an arid zone grass. Plant. Soil 66, 417–421 (1982).
Source: Ecology - nature.com