Dubois, E. On Pithecanthropus Erectus: a transitional form between man and the apes. J. Anthropol. Inst. G. B. Irel. 25, 240–255 (1896).
von Koenigswald, G. H. R. Neue Pithecanthropus-funde, 1936-1938 : ein beitrag zur Kenntnis der Praehominiden Wetenschappelijke Mededeelingen ; no. 28 (Landsdrukkerij, Batavia, 1940).
Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quatern. Sci. Rev. 144, 145–154 (2016).
Google Scholar
Bettis, E. A. et al. Way out of Africa: Early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56(1), 11–24 (2009).
Google Scholar
Huffman, O. Geologic context and age of the Perning/Mojokerto Homo erectus, East Java. J. Hum. Evol. 40(4), 353–362 (2001).
Google Scholar
Sarr, A.-C. et al. Subsiding Sundaland. Geology (Boulder) 47(2), 119–122 (2019).
Google Scholar
Salles, T. et al. Quaternary landscape dynamics boosted species dispersal across Southeast Asia. Commun. Earth Environ. 2(1), 1–12 (2021).
Google Scholar
Husson, L., Boucher, F. C., Sarr, A., Sepulchre, P. & Cahyarini, S. Y. Evidence of Sundaland’s subsidence requires revisiting its biogeography. J. Biogeogr. 47(4), 843–853 (2020).
Winder, I. C. et al. Evolution and dispersal of the genus Homo: A landscape approach. J. Hum. Evol. 87, 48–65 (2015).
Google Scholar
Carotenuto, F. et al. Venturing out safely: The biogeography of Homo erectus dispersal out of Africa. J. Hum. Evol. 95, 1–12 (2016).
Google Scholar
Larick, R. et al. Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia. Proc. Natl. Acad. Sci. PNAS 98(9), 4866–4871 (2001).
Google Scholar
Swisher, C. C., Curtis, G. H., Jacob, T., Getty, A. G. & Suprijo, A. Age of the earliest known hominids in Java, Indonesia. Science 263(5150), 1118–1121 (1994).
Google Scholar
Sémah, F., Saleki, H., Falguŕes, C., Féraud, G. & Djubiantono, T. Did early man reach Java during the Late Pliocene?. J. Archaeol. Sci. 27(9), 763–769 (2000).
Bettis, E. et al. Landscape development preceding Homo erectus immigration into Central Java, Indonesia: The Sangiran Formation Lower Lahar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206(1), 115–131 (2004).
Matsu’ura, S. et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 367(6474), 210–214 (2020).
Google Scholar
Granger, D. E. & Muzikar, P. F. Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations. Earth Planet. Sci. Lett. 188(1), 269–281 (2001).
Google Scholar
Shen, G., Gao, X., Gao, B. & Granger, D. E. Age of Zhoukoudian Homo erectus determined with 26Al/10Be burial dating. Nature 458(7235), 198–200 (2009).
Google Scholar
Pappu, S. et al. Early Pleistocene presence of Acheulian Hominins in South India. Science 331(6024), 1596–1599 (2011).
Google Scholar
Lebatard, A.-E. et al. Dating the Homo erectus bearing travertine from Kocabaş (Denizli, Turkey) at at least 1.1 Ma. Earth Planet. Sci. Lett.390, 8–18 (2014).
Lebatard, A.-E., Bourlès, D. L. & Braucher, R. Absolute dating of an Early Paleolithic site in Western Africa based on the radioactive decay of in situ-produced 10Be and 26Al. Nucl. Instrum. Methods Phys. Res. Sect. B 456, 169–179 (2019).
Google Scholar
Braucher, R., Oslisly, R., Mesfin, I., Ntoutoume Mba, P. P. & Team, A. In situ-produced 10 Be and 26 Al indirect dating of Elarmékora Earlier Stone Age artifacts: First attempt in a savannah forest mosaic in the middle Ogooué valley, Gabon. Philos. Trans. Biol. Sci. (2021) .
Grimaud-Hervé, D. et al. Position of the posterior skullcap fragment from Sendang Klampok (Sangiran Dome, Java, Indonesia) among the Javanese Homo erectus record. Quatern. Int. 416, 193–209 (2016).
Sartono, S. Observations on a new skull of Pithecanthropus erectus (Pithecanthropus VIII), from Sangiran, Central Java. Koninklijke Akademie Wetenschappen te Amsterdam 74, 185–194 (1971).
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: Improved version released. EOS Trans. Am. Geophys. Union 94(45), 409–410. https://doi.org/10.1002/2013EO450001 (2013).
Google Scholar
Antón, S., Potts, R. & Aiello, L. Evolution of Early Homo: An integrated biological perspective. Science (New York, N.Y.)345 (2014). https://doi.org/10.1126/science.1236828.
Luo, L. et al. The first radiometric age by isochron 26Al/10Be burial dating for the Early Pleistocene Yuanmou hominin site, southern China. Quat. Geochronol. 55, 101022. https://doi.org/10.1016/j.quageo.2019.101022 (2019).
Google Scholar
Zaim, Y. et al. New 1.5 million-year-old Homo erectus maxilla from Sangiran (Central Java, Indonesia). J. Hum. Evol.61(4), 363–376 (2011).
Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577(7790), 381–385 (2020).
Google Scholar
McRae, B. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 104, 19885–90. https://doi.org/10.1073/pnas.0706568104 (2008).
Google Scholar
Quaglietta, L. & Porto, M. SiMRiv: An R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias. Mov. Ecol. https://doi.org/10.1186/s40462-019-0154-8 (2019).
Google Scholar
Landau, V. A., Shah, V. B., Anantharaman, R. & Hall, K. R. Omniscape.jl: Software to compute omnidirectional landscape connectivity. J. Open Source Softw.6(57), 2829 (2021). https://doi.org/10.21105/joss.02829.
Salles, T., Mallard, C. & Zahirovic, S. gospl: Global Scalable Paleo Landscape Evolution. J. Open Source Softw.5(56), 2804 (2020). https://doi.org/10.21105/joss.02804.
Husson, L. et al. Slow geodynamics and fast morphotectonics in the far East Tethys. Geochem. Geophys. Geosyst. 23(1), n/a (2022).
Valdes, P., Scotese, C. & Lunt, D. Deep ocean temperatures through time. Climate Past 17, 1483–1506. https://doi.org/10.5194/cp-17-1483-2021 (2021).
Google Scholar
Hyodo, M. et al. High-resolution record of the Matuyama–Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia. Proc. Natl. Acad. Sci. PNAS 108(49), 19563–19568 (2011).
Google Scholar
Brasseur, B., Sémah, F., Sémah, A.-M. & Djubiantono, T. Pedo-sedimentary dynamics of the Sangiran dome hominid bearing layers (Early to Middle Pleistocene, central Java, Indonesia): A palaeopedological approach for reconstructing ‘Pithecanthropus’ (Javanese Homo erectus) palaeoenvironment. Quatern. Int. 376, 84–100 (2015).
Falguéres, C. et al. Geochronology of early human settlements in Java: What is at stake?. Quatern. Int. 416, 5–11 (2016).
Roach, N. et al. Pleistocene footprints show intensive use of lake margin habitats by Homo erectus groups. Sci. Rep. 121 (2016). https://doi.org/10.1038/srep26374.
Simandjuntak, T. O. & Barber, A. J. Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. Geol. Soc. Spec. Pub. 106(1), 185–201 (1996).
Clements, B., Hall, R., Smyth, H. R. & Cottam, M. A. Thrusting of a volcanic arc; a new structural model for Java. Pet. Geosci. 15(2), 159–174 (2009).
Joordens, J., Wesselingh, F., de Vos, J., Vonhof, H. & Kroon, D. Relevance of aquatic environments for hominins: A case study from Trinil (Java, Indonesia). J. Hum. Evol. 57(6), 656–671 (2009).
Google Scholar
Berghuis, H. et al. Hominin homelands of East Java: Revised stratigraphy and landscape reconstructions for Plio-Pleistocene Trinil. Quatern. Sci. Rev. 260, 106912 (2021).
Fort, J., Pujol, T. & Cavalli-Sforza, L. Palaeolithic populations and waves of advance. Camb. Archaeol. J. 14, 53–61. https://doi.org/10.1017/S0959774304000046 (2004).
Google Scholar
Hamilton, M. & Buchanan, B. Spatial gradients in Clovis-age radiocarbon dates across North America suggest rapid colonization from the north. Proc. Natl. Acad. Sci. USA 104, 15625–30. https://doi.org/10.1073/pnas.0704215104 (2007).
Google Scholar
Hazelwood, L. & Steele, J. Spatial dynamics of human dispersals: Constraints on modelling and archaeological validation. J. Archaeol. Sci. 31, 669–679. https://doi.org/10.1016/j.jas.2003.11.009 (2004).
Google Scholar
Bae, C., Li, F., Liuling, C., Wang, W. & Hanlie, H. Hominin distribution and density patterns in pleistocene China: Climatic influences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512 (2018). https://doi.org/10.1016/j.palaeo.2018.03.015.
Timmermann, A. et al. Climate effects on archaic human habitats and species successions. Nature 604, 1–7. https://doi.org/10.1038/s41586-022-04600-9 (2022).
Google Scholar
Bailey, G. N., Reynolds, S. C. & King, G. C. Landscapes of human evolution: Models and methods of tectonic geomorphology and the reconstruction of hominin landscapes. J. Hum. Evol. 60(3), 257–280 (2011).
Google Scholar
Sarr, A., Sepulchre, P. & Husson, L. Impact of the Sunda Shelf on the Climate of the Maritime Continent. J. Geophys. Res. Atmos. 124(5), 2574–2588 (2019).
Google Scholar
Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586(7829), 402–406 (2020).
Google Scholar
Raia, P. et al. Past extinctions of homo species coincided with increased vulnerability to climatic change. One Earth 3(4), 480–490 (2020).
Google Scholar
Zhu, Z. et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature 559(7715), 608–612 (2018).
Gabunia, L. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting, and age. Science 288, 1019–1025. https://doi.org/10.1126/science.288.5468.1019 (2000).
Google Scholar
Lordkipanidze, D. et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early homo. Science 342(6156), 326–331 (2013).
Google Scholar
Baba, H. et al. Homo erectus calvarium from the pleistocene of java. Sci. (Am. Assoc. Adv. Sci.) 299 (5611), 1384–1388 (2003) .
Ciochon, R. L. & Bettis, E. A. III. Asian Homo erectus converges in time. Nature 458(7235), 153–154 (2009).
Google Scholar
Dennell, R. & Roebroeks, W. An Asian perspective on early human dispersal from Africa. Nature 438(7071), 1099–1104 (2005).
Google Scholar
Martinon-Torres, M. et al. Dental evidence on the hominin dispersals during the Pleistocene. Proc. Natl. Acad. Sci. PNAS 104(33), 13279–13282 (2007).
Google Scholar
Wood, B. Did early Homo migrate “out of’’ or “in to’’ Africa?. Proc. Natl. Acad. Sci. PNAS 108(26), 10375–10376 (2011).
Google Scholar
Shen, G. et al. Isochron 26Al/10Be burial dating of Xihoudu: Evidence for the earliest human settlement in northern China. Anthropologie 124, 102790. https://doi.org/10.1016/j.anthro.2020.102790 (2020).
Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms268(2), 192–199 (2010).
Korschinek, G. et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268(2), 187–191 (2010) .
Nishiizumi, K. Preparation of 26Al AMS standards. Nucl. Inst. and Meth. in Phys. Res. 223-224, 388–392 (2004).
Norris, T. L., Gancarz, A. J., Rokop, D. J. & Thomas, K. W. Half-life of 26Al. J. Geophys. Res. Solid Earth 88(S01), B331–B333 (1983).
Google Scholar
Braucher, R., Merchel, S., Borgomano, J. & Bourlès, D. Production of cosmogenic radionuclides at great depth: A multi element approach. Earth Planet. Sci. Lett. 309(1), 1–9 (2011).
Google Scholar
Braucher, R. et al. Preparation of ASTER in-house 10Be/9Be standard solutions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms361, 335–340 (2015) .
Merchel, S. & Bremser, W. First international 26Al interlaboratory comparison—Part I. Nucl. Instrum. Methods Phys. Res. 223–224, 393–400 (2004).
Google Scholar
Arnold, M. et al. The French accelerator mass spectrometry facility ASTER: Improved performance and developments. Nucl. Instrum. Methods Phys. Res. 268(11), 1954–1959 (2010).
Google Scholar
Borchers, B. et al. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 31, 188–198 (2016).
Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 105(B10), 23753–23759 (2000).
Bintanja, R. & van de Wal, R. S. W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454, 869–872. https://doi.org/10.1038/nature07158 (2008).
Google Scholar
Field, J. & Mirazon Lahr, M. Assessment of the Southern Dispersal: GIS-Based Analyses of Potential Routes at Oxygen Isotopic Stage 4. J. World Prehist. 19, 1–45 (2005). https://doi.org/10.1007/s10963-005-9000-6.
Howey, M. Multiple pathways across past landscapes: Circuit theory as a complementary geospatial method to least cost path for modeling past movement. J. Archaeol. Sci. 38, 2523–2535. https://doi.org/10.1016/j.jas.2011.03.024 (2011).
Google Scholar
Tassi, F. et al. Early modern human dispersal from Africa: Genomic evidence for multiple waves of migration. Investig. Genet. 6, 13. https://doi.org/10.1186/s13323-015-0030-2 (2015).
Google Scholar
Kealy, S., Louys, J. & O’Connor, S. Least-cost pathway models indicate northern human dispersal from Sunda to Sahul. J. Hum. Evol. 125, 59–70. https://doi.org/10.1016/j.jhevol.2018.10.003 (2018).
Google Scholar
Dennell, R. W., Rendell, H. M. & Hailwood, E. Late pliocene artefacts from northern Pakistan. Curr. Anthropol. 29(3), 495–498 (1988).
Zhu, R. et al. Early evidence of the genus homo in east asia. J. Hum. Evol. 55(6), 1075–1085 (2008).
Google Scholar
Gowen, K. M. & de Smet, T. S. Testing least cost path (LCP) models for travel time and kilocalorie expenditure: Implications for landscape genomics. PLoS ONE 15(9), 1–20. https://doi.org/10.1371/journal.pone.0239387 (2020).
Google Scholar
Walt, S. et al. scikit-image: Image processing in Python. PeerJ 2, e453. https://doi.org/10.7287/peerj.preprints.336v2 (2014).
Google Scholar
Mueller, T. & Fagan, W. Search and navigation in dynamic environments—From individual behaviors to population distributions. Oikos 117, 654–664. https://doi.org/10.1111/j.0030-1299.2008.16291.x (2008).
Google Scholar
Bastille-Rousseau, G., Douglas-Hamilton, I., Blake, S., Northrup, J. & Wittemyer, G. Applying network theory to animal movements to identify properties of landscape space use. Ecol. Appl. 28 (2018). https://doi.org/10.1002/eap.1697.
Michelot, T., Langrock, R. & Patterson, T. moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol. Evol. 7 (2016). https://doi.org/10.1111/2041-210X.12578 .
Benhamou, S. How many animals really do the Lévy Walk. Ecology 88, 1962–9. https://doi.org/10.1890/06-1769.1 (2007).
Google Scholar
Turchin, P. Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution of Plants and Animals (Sinauer Associates, Sunderland, 1998).
Lieberman, D. E. The Story of the Human Body: Evolution, Health, and Disease (Pantheon Books, New York, 2013).
Braun, D. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc. Natl. Acad. Sci. USA 107, 10002–7 (2010). https://doi.org/10.1073/pnas.1002181107.
O’Connor, S., Louys, J., Kealy, S. & Samper Carro, S. C. Hominin dispersal and settlement east of huxley’s line: The role of sea level changes, island size, and subsistence behavior. Curr. Anthropol. 58(S17), S567–S582 (2017).
Macaulay, V. et al. Single, rapid coastal settlement of asia revealed by analysis of complete mitochondrial genomes. Science (New York, N.Y.)308, 1034–6 (2005). https://doi.org/10.1126/science.1109792.
Source: Ecology - nature.com