in

Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids

  • McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. U.S.A. 104(Suppl 1), 8627–8633 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurst, G. D. D. Extended genomes: Symbiosis and evolution. Interface Focus. https://doi.org/10.1098/rsfs.2017.0001 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hu, Y. et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9, 2440. https://doi.org/10.1038/s41467-018-03357-y (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. 112, 10169–10176 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, M. A. et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. MBio 9, e02104-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchner, P. Symbiosis in animals which suck plant juices. In Endosymbiosis of Animals with Plant Microorganisms 210–432 (Interscience, 1965).

    Google Scholar 

  • McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. 106, 15394–15399 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christensen, H. & Fogel, M. L. Feeding ecology and evidence for amino acid synthesis in the periodical cicada (Magicicada). J. Insect Physiol. 57, 211–219 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 5, e1000565 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. 112, 10192–10199 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, H. J. Neuere vorstellungen über verbreitung und phylogenie der endosymbiosen der zikaden. Z. Morphol. Oekol. Tiere 61, 190–210 (1962).

    Article 

    Google Scholar 

  • Müller, H. J. Zur systematik und phylogenie der zikaden-endosymbiosen. Biol. Zent. 68, 343–368 (1949).

    Google Scholar 

  • Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. 115, E5970–E5979 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J. Insect Sci. 15, 1–6 (2015).

    Article 

    Google Scholar 

  • Zheng, Z., Wang, D., He, H. & Wei, C. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 12, 1–21 (2017).

    Google Scholar 

  • Wang, D., Huang, Z., He, H. & Wei, C. Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch. Microbiol. 200, 227–235 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ng, S. H., Stat, M., Bunce, M. & Simmons, L. W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 8, 4704–4720 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, A. E. & Werren, J. H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. MBio 7, e02099 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grueneberg, J., Engelen, A. H., Costa, R. & Wichard, T. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One 11, e0146307 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).

    Article 

    Google Scholar 

  • Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, 1–29 (2016).

    Article 

    Google Scholar 

  • Kropáčková, L. et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26, 5292–5304 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403. https://doi.org/10.3389/fmicb.2015.01403 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y., Lukasik, P., Moreau, C. S. & Russell, J. A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 23, 1284–1300 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnz117 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Marshall, D. C. et al. Inflation of molecular clock rates and dates: Molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst. Biol. 65, 16–34 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lane, D. H. The recognition concept of speciation applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insects: Hemiptera: Tibicinidae). Speciation and the Recognition Concept: Theory and Application (The Johns Hopkins Univ Press, 1995).

    Google Scholar 

  • Cooley, J. R. & Marshall, D. C. Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour 138, 827–855 (2001).

    Article 

    Google Scholar 

  • Fleming, C. A. Adaptive Radiation in New Zealand Cicadas (American Philosophical Society, 1975).

    Google Scholar 

  • Dugdale, J. S. & Fleming, C. A. New Zealand cicadas of the genus Maoricicada (Homoptera: Tibicinidae). N. Z. J. Zool. 5, 295–340 (1978).

    Article 

    Google Scholar 

  • Marshall, D. C., Hill, K. B. R., Cooley, J. R. & Simon, C. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: Lessons from New Zealand cicadas (genus Kikihia). Syst. Biol. 60, 482–502 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Report No.: e27295v2. PeerJ https://doi.org/10.7287/peerj.preprints.27295v2 (2018).

    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1101/221499 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simon, C. et al. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol. J. Linn. Soc. Lond. https://doi.org/10.1093/biolinnean/blz120 (2019).

    Article 

    Google Scholar 

  • Owen, C. L. et al. Detecting and removing sample contamination in phylogenomic data: An example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst. Biol. 71, 1504–1523 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Report No.: LBNL-7065E. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (Lawrence Berkeley National Lab. (LBNL), 2014).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Research in Computational Molecular Biology 158–170 (Springer, 2013).

    Chapter 

    Google Scholar 

  • Łukasik, P. et al. One hundred mitochondrial genomes of cicadas. J. Hered. 110, 247–256 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).

    Article 
    PubMed Central 

    Google Scholar 

  • Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, M. A., Pfeiffer, W., Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).

  • Buckley, T. R., Cordeiro, M., Marshall, D. C. & Simon, C. Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Syst. Biol. 55, 411–425 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Marshall, D. C., Slon, K., Cooley, J. R., Hill, K. B. R. & Simon, C. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Mol. Phylogenet. Evol. 48, 1054–1066 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Bator, J., Marshall, D. C., Leston, A., Cooley, J. & Simon, C. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta): Molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zool. J. Linn. Soc. 195, 1219–1244 (2022).

    Article 

    Google Scholar 

  • Brumfield, K. D. et al. Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X. Sci. Rep. 12, 16967. https://doi.org/10.1038/s41598-022-20527-7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rakitov, R. A. Structure and function of the Malpighian tubules, and related behaviors in juvenile cicadas: Evidence of homology with spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anz. 241, 117–130 (2002).

    Article 

    Google Scholar 

  • Andersen, P. C., Brodbeck, B. V. & Mizell, R. F. Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J. Insect Physiol. 38, 611–622 (1992).

    Article 
    CAS 

    Google Scholar 

  • Cheung, W. W. K. & Marshall, A. T. Water and ion regulation in cicadas in relation to xylem feeding. J. Insect Physiol. 19, 1801–1816 (1973).

    Article 
    CAS 

    Google Scholar 

  • Williams, K. S. & Simon, C. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995).

    Article 
    CAS 

    Google Scholar 

  • Logan, D. P., Rowe, C. A. & Maher, B. J. Life history of chorus cicada, an endemic pest of kiwifruit (Cicadidae: Homoptera). N. Z. Entomol. 37, 96–106 (2014).

    Article 

    Google Scholar 

  • Buckley, T. R. & Simon, C. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biol. J. Linn. Soc. Lond. 91, 419–435 (2007).

    Article 

    Google Scholar 

  • Banker, S. E., Wade, E. J. & Simon, C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol. Phylogenet. Evol. 116, 172–181 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Wang, J. et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation. Science 466, 667–669 (2013).

    Article 

    Google Scholar 

  • Chandler, J. A. & Turelli, M. Comment on “The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia”. Science 345, 1011 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 8, 1016–1023 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weintraub, P. G. & Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91–111 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27, 271–290 (1989).

    Article 

    Google Scholar 

  • Karban, R. Why cicadas (Hemiptera: Cicadidae) develop so slowly. Biol. J. Linn. Soc. Lond. 135, 291–298 (2021).

    Article 

    Google Scholar 

  • Krell, R. K., Boyd, E. A., Nay, J. E., Park, Y.-L. & Perring, T. M. Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am. J. Enol. Vitic. 58, 211–216 (2007).

    Article 
    CAS 

    Google Scholar 

  • Paião, F., Meneguim, A. M., Casagrande, E. C., Lovato, L. & Leite, R. P. Levantamento de espécies de cigarras e transmissão de Xylella fastidiosa em cafeeiro. http://www.sbicafe.ufv.br/handle/123456789/1457 (2003).

  • Elbeaino, T. et al. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. Phytopathol. Mediterr. 53, 328–332 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Policy Hackathon produces new solutions for technology policy challenges

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference