in

Landscape genetics of a sub-alpine toad: climate change predicted to induce upward range shifts via asymmetrical migration corridors

  • Alexander MA, Eischeid JK (2001) Climate variability in regions of amphibian declines. Conserv Biol 15:930–942

    Article 

    Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article 

    Google Scholar 

  • Baur B (1986) Patterns of dispersion, density and dispersal in alpine populations of the land snail Arianta arbustorum (L.) (Helicidae). Holarct Ecol 9:117–125

    Google Scholar 

  • Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851

    PubMed 
    Article 

    Google Scholar 

  • Berlow EL, Knapp R, Ostoja SM, Williams RJ, McKenny H, Matchett JR et al. (2013) A network extension of species occupancy models in a patchy environment applied to the Yosemite toad (Anaxyrus canorus). PLoS ONE 8:e72200

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bingaman JW (1968) Pathways: a story of trails and men. End-Kian Publishing Company, Lodi, CA

  • Bozzuto C, Biebach I, Muff S, Ives AR, Keller LF (2019) Inbreeding reduces long-term growth of Alpine ibex populations. Nat Ecol Evol 3:1359–1364

    PubMed 
    Article 

    Google Scholar 

  • Bradford D, Gordon M (1994) Acidic deposition as an unlikely cause for amphibian population declines in the Sierra Nevada, California. Biol Conserv 69:155–161

    Article 

    Google Scholar 

  • Brattstrom BH (1962) Thermal control of aggregation behavior in tadpoles. Herpetologica 18:38–46

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article 

    Google Scholar 

  • Brown C, Hayes MP, Green GA, Macfarlane DC, Lind AJ (2015) Yosemite toad conservation assessment. USDA Forest Service report. Sonora, CA

  • Brown C, Olsen AR (2013) Bioregional monitoring design and occupancy estimation for two Sierra Nevadan amphibian taxa. Freshw Sci 32:675–691

    Article 

    Google Scholar 

  • Cal Fire (2022) Fire perimeters. FRAP Mapp. https://frap.fire.ca.gov/mapping/gis-data/

  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet 1:171–182

    CAS 

    Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chetkiewicz C-LB, St. Clair CC, Boyce MS (2006) Corridors for conservation: integrating pattern and process. Annu Rev Ecol Evol Syst 37:317–342

    Article 

    Google Scholar 

  • Corn PS (2003) Amphibian breeding and climate change importance of snow in the mountains. Conserv Biol 17:622–625

    Article 

    Google Scholar 

  • Csárdi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9

    Google Scholar 

  • Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14:1892–1902

    Article 

    Google Scholar 

  • Dileo MF, Siu JC, Rhodes MK, Lõpez-Villalobos A, Redwine A, Ksiazek K et al. (2014) The gravity of pollination: integrating at-site features into spatial analysis of contemporary pollen movement. Mol Ecol 23:3973–3982

    PubMed 
    Article 

    Google Scholar 

  • Dodge C, Cheng T, Vredenburg V (2012) Exploring the evidence of a historical chytrid epidemic in the Yosemite toad by PCR analysis of museum specimens

  • Douglas DH (1994) Least-cost path in GIS using an accumulated cost surface and slopelines. Cartographica 31:37–51

    Article 

    Google Scholar 

  • Dozier J, Frew J (2009) Computational provenance in hydrologic science: a snow mapping example. Philos Trans R Soc A Math Phys Eng Sci 367:1021–1033

    Article 

    Google Scholar 

  • Dozier J, Painter TH, Rittger K, Frew JE (2008) Time-space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv Water Resour 31:1515–1526

    Article 

    Google Scholar 

  • Drost C, Fellers G (1994) Decline of frog species in the Yosemite section of the Sierra Nevada. National Park Service report. Davis, CA

  • Drost C, Fellers G (1996) Collapse of a regional frog fauna in the Yosemite area of the California Sierra Nevada, USA. Conserv Biol 10:414–425

    Article 

    Google Scholar 

  • Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727

    PubMed 
    Article 

    Google Scholar 

  • Dyer RJ, Nason JD, Garrick RC (2010) Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759

    PubMed 
    Article 

    Google Scholar 

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724

    Article 

    Google Scholar 

  • van Etten J (2017) R Package gdistance: distances and routes on geographical grids. J Stat Softw 76:1–21

    Google Scholar 

  • Evans J, Oakleaf J, Cushman S, Theobald D (2014) An ArcGIS toolbox for surface gradient and geomorphometric modeling

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fitzpatrick MC, Keller SR (2015) Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett 18:1–16

    PubMed 
    Article 

    Google Scholar 

  • Flint LE, Flint AL, Thorne JH, Boynton R (2013) Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol Process 2:1–21

    Article 

    Google Scholar 

  • Gaggiotti OE (2003) Genetic threats to population persistence. Ann Zool Fennici 40:155–168

    Google Scholar 

  • Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1:620–630

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gotelli NJ (1991) Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. Am Nat 138:768–776

    Article 

    Google Scholar 

  • Grasso RL, Coleman RM, Davidson C (2010) Palatability and antipredator response of Yosemite toads (Anaxyrus canorus) to nonnative brook trout (Salvelinus fontinalis) in the Sierra Nevada Mountains of California. Copeia 2010:457–462

    Article 

    Google Scholar 

  • Graves TA, Beier P, Royle JA (2013) Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol Ecol 22:3888–3903

    PubMed 
    Article 

    Google Scholar 

  • Gregorutti B, Michel B, Saint-Pierre P (2017) Correlation and variable importance in random forests. Stat Comput 27:659–678

    Article 

    Google Scholar 

  • Grinnell J, Storer TI (1924) Animal life in the Yosemite: an account of the mammals, birds, reptiles, and amphibians in a cross-section of the Sierra Nevada. University of California Press, Berkeley, CA

  • Hall DK, Riggs GA, Salomonson VV, Digirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83:181–194

    Article 

    Google Scholar 

  • Hansson L (1991) Dispersal and connectivity in metapopulations. Biol J Linn Soc 42:89–103

    Article 

    Google Scholar 

  • Heenkenda MK, Joyce KE, Maier SW, de Bruin S (2015) Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS J Photogramm Remote Sens 108:234–244

    Article 

    Google Scholar 

  • Hether TD, Hoffman EA (2012) Machine learning identifies specific habitats associated with genetic connectivity in Hyla squirella. J Evol Biol 25:1039–1052

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Houborg R, McCabe MF (2018) A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J Photogramm Remote Sens 135:173–188

    Article 

    Google Scholar 

  • Huber N, Bateman P, Wahrhaftig C (2003) Geologic map of Yosemite National Park and Vicinity, California: a digital database. Menlo Park, CA

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland

  • Jennings M, Hayes M (1994) Amphibian and reptile species of special concern in California. California Department of Fish & Game report. Rancho Cordova, CA

  • Karlstrom EL (1962) The toad genus Bufo in the Sierra Nevada of California: ecological and systematic relationships. Unviersity Calif Publ Zool 62:1–104

    Google Scholar 

  • Keeler-Wolf T, Reyes ET, Menke JM, Johnson DN, Karavidas. DL (2012) Yosemite National Park vegetation classification and mapping project report. National Park Service report. Fort Collins, CO

  • Kittlein MJ, Mora MS, Mapelli FJ, Austrich A, Gaggiotti OE (2022) Deep learning and satellite imagery predict genetic diversity and differentiation. Methods Ecol Evol 13:711–721

    Article 

    Google Scholar 

  • Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46:604–632

    Article 

    Google Scholar 

  • Knapp RA, Fellers GM, Kleeman PM, Miller DAW, Vredenburg VT, Rosenblum EB et al. (2016) Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proc Natl Acad Sci 113:11889–11894

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Knapp RA, Matthews KR (2000) Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conserv Biol 14:428–438

    Article 

    Google Scholar 

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26

    Article 

    Google Scholar 

  • Lee SR, Ostoja SM, Maier PA, Matchett JR, McKenny HC, Brooks ML et al. Distribution and spatio-temporal variation of Yosemite toad populations in Sierra Nevada national parks (in preparation)

  • Liang CT (2010) Habitat modeling and movements of the Yosemite toad (Anaxyrus (=Bufo) canorus) in the Sierra Nevada, California. Ph.D. Dissertation. University of California, Davis

  • Liang CT, Grasso RL, Nelson-Paul JJ, Vincent KE, Lind AJ (2017) Fine-scale habitat characteristics related to occupancy of the Yosemite toad, Anaxyrus canorus. Copeia 105:120–127

    Article 

    Google Scholar 

  • Liang CT, Stohlgren TJ (2011) Habitat suitability of patch types: a case study of the Yosemite toad. Front Earth Sci 5:217–228

    CAS 
    Article 

    Google Scholar 

  • Lindauer AL, Maier PA, Voyles J (2020) Daily fluctuating temperatures decrease growth and reproduction rate of a lethal amphibian fungal pathogen in culture. BMC Ecol 20:1–9

    Article 
    CAS 

    Google Scholar 

  • Lindauer AL, Voyles J (2019) Out of the frying pan, into the fire? Yosemite toad (Anaxyrus canorus) susceptibility to Batrachochytrium dendrobatidis after development under drying conditions. Herpetol Conserv Biol 14:185–198

    Google Scholar 

  • Littlefield CE, Krosby M, Michalak JL, Lawler JJ (2019) Connectivity for species on the move: supporting climate-driven range shifts. Front Ecol Environ 17:270–278

    Article 

    Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    PubMed 
    Article 

    Google Scholar 

  • Maher SP, Morelli TL, Hershey M, Flint AL, Flint LE, Moritz C et al. (2017) Erosion of refugia in the Sierra Nevada meadows network with climate change. Ecosphere 8:1–17

    Article 

    Google Scholar 

  • Maier PA (2018) Evolutionary past, present, and future of the Yosemite toad (Anaxyrus canorus): a total evidence approach to delineating conservation units. Ph.D. Dissertation. University of California Riverside

  • Maier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ (2019) Pleistocene glacial cycles drove lineage diversification and fusion in the Yosemite toad (Anaxyrus canorus). Evolution 73:2476–2496

    PubMed 
    Article 

    Google Scholar 

  • Maier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ (2022) Gene pool boundaries for the Yosemite toad (Anaxyrus canorus) reveal asymmetrical migration within meadow neighborhoods. Front Conserv Sci 3:1–14

    Article 

    Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    PubMed 
    Article 

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article 

    Google Scholar 

  • Martin DL (2008) Decline, movement and habitat utilization of the Yosemite toad (Bufo canorus): an endangered anuran endemic to the Sierra Nevada of California. Ph.D. Dissertation. University of California, Santa Barbara

  • Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF et al. (2006) A landsat surface reflectance dataset, 1990-2000. IEEE Geosci Remote Sens Lett 3:68–72

    Article 

    Google Scholar 

  • Matchett JR, Stark PB, Ostoja SM, Knapp RA, McKenny HC, Brooks ML et al. (2015) Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test. Sci Rep 5:1–12

    Article 
    CAS 

    Google Scholar 

  • Mathieu J, Barot S, Blouin M, Caro G, Decaëns T, Dubs F et al. (2010) Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biol Biochem 42:203–209

    CAS 
    Article 

    Google Scholar 

  • Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28:403–416

    Article 

    Google Scholar 

  • McRae B (2006) Isolation by resistance. Evolution 60:1551–1561

    PubMed 
    Article 

    Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meyer H, Pebesma E (2021) Predicting into unknown space? estimating the area of applicability of spatial prediction models. Methods Ecol Evol 12:1620–1633

    Article 

    Google Scholar 

  • Morelli TL, Maher SP, Lim MCW, Kastely C, Eastman LM, Flint LE et al. (2017) Climate change refugia and habitat connectivity promote species persistence. Clim Chang Responses 4:8

    Article 

    Google Scholar 

  • Morton M (1981) Seasonal changes in total body lipid and liver weight in the Yosemite toad. Copeia 1981:234–238

    Article 

    Google Scholar 

  • Morton M, Pereyra M (2010) Habitat use by Yosemite toads: life history traits and implications for conservation. Herpetol Conserv Biol 5:388–394

    Google Scholar 

  • Mullally D (1953) Observations on the ecology of the toad Bufo canorus. Copeia 1953:182–183

    Article 

    Google Scholar 

  • Mullally D, Cunningham J (1956) Aspects of the thermal ecology of the Yosemite toad. Herpetologica 12:57–67

    Google Scholar 

  • Murphy MA, Dezzani R, Pilliod D, Storfer A (2010a) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649

    PubMed 
    Article 

    Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010b) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    PubMed 
    Article 

    Google Scholar 

  • National Park Service (2022) National park service visitor use statistics

  • Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Hum Genet 47:253–259

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8:234–239

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Painter TH, Rittger K, McKenzie C, Slaughter P, Davis RE, Dozier J (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ 113:868–879

    Article 

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article 

    Google Scholar 

  • Peterman WE (2018) Surfaces using genetic algorithms ResistanceGA: an R package for the optimization of resistance. Methods Ecol Evol 9:1638–1647

    Article 

    Google Scholar 

  • Peterman WE, Pope NS (2021) The use and misuse of regression models in landscape genetic analyses. Mol Ecol 30:37–47

    PubMed 
    Article 

    Google Scholar 

  • Peterson MA (1997) Host plant phenology and butterfly dispersal: causes and consequences of uphill movement. Ecology 78:167–180

    Article 

    Google Scholar 

  • Pflüger FJ, Balkenhol N (2014) A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal. Mol Ecol 23:2146–56

    PubMed 
    Article 

    Google Scholar 

  • Pless E, Saarman NP, Powell JR, Caccone A, Amatulli G (2021) A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc Natl Acad Sci USA 118:1–8

    Article 
    CAS 

    Google Scholar 

  • Pounds J (2001) Climate and amphibian declines. Nature 410:639–640

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN et al. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Quinlan JR (1992) Learning with continuous classes. Aust Jt Conf Artif Intell 92:343–348

    Google Scholar 

  • Quinlan JR (1993) Combining instance-based and model-based learning. Mach Learn Proc 1993 93:236–243

    Article 

    Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57:241–262

    Article 

    Google Scholar 

  • Ratliff RD (1985) Meadows in the Sierra Nevada of California: state of knowledge. U.S. Forest Service report. Berkeley, CA

  • Reich KD, Berg N, Walton DB, Schwartz M, Sun F, Huang X et al. (2018) Climate change in the Sierra Nevada: California’s water future. UCLA Center for Climate Science report. Los Angeles, CA

  • Reynolds SJ, Christian KA (2009) Environmental moisture availability and body fluid osmolality in introduced toads. J Herpetol 43:326–331

    Article 

    Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G et al. (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57

    CAS 
    Article 

    Google Scholar 

  • Roche LM, Allen-Diaz B, Eastburn DJ, Tate KW (2012a) Cattle grazing and Yosemite toad (Bufo canorus, Camp) breeding habitat in Sierra Nevada meadows. Rangel Ecol Manag 65:56–65

    Article 

    Google Scholar 

  • Roche LM, Latimer AM, Eastburn DJ, Tate KW (2012b) Cattle grazing and conservation of a meadow-dependent amphibian species in the Sierra Nevada. PLoS ONE 7:e35734

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sacchei I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article 
    CAS 

    Google Scholar 

  • Sadinski W (2004) Amphibian declines: causes. U.S. Geological Survey report. La Crosse, Wisconsin

  • Sadinski W, Gallant AL, Cleaver JE (2020) Climate’s cascading effects on disease, predation, and hatching success in Anaxyrus canorus, the threatened Yosemite toad. Glob Ecol Conserv 23:e01173

    Article 

    Google Scholar 

  • Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48:668–678

    Article 

    Google Scholar 

  • Schlaepfer DR, Braschler B, Rusterholz HP, Baur B (2018) Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9 e02488

  • Schmidt G, Jenkerson C, Masek J, Vermote E, Gao F (2013) Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description. U.S. Geological Survey report. Reston, VA

  • Shaffer H, Fellers G, Magee A, Voss S (2000) The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Mol Ecol 9:245–257

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sherman CK (1980) A comparison of the natural history and mating system of two anurans: Yosemite toads (Bufo canorus) and Black toads (Bufo exsul). Ph.D. Dissertation. University of Michigan

  • Sherman CK, Morton ML (1984) The toad that stays on its toes. Nat Hist 93:72–78

    Google Scholar 

  • Sherman CK, Morton ML (1993) Population declines of Yosemite toads in the eastern Sierra Nevada of California. J Herpetol 27:186–198

    Article 

    Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith JB, Tirpak DA (1988) The potential effects of global climate change on the United States: draft: report to Congress. U.S. Environmental Protection Agency, Office of Policy, Planning and Evaluation, Office of Research and Devel

  • Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H et al. (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19:3806–3823

    PubMed 
    Article 

    Google Scholar 

  • Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    PubMed 
    Article 

    Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448

    Article 

    Google Scholar 

  • Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Process 23:78–94

    Article 

    Google Scholar 

  • Storfer A, Murphy M, Evans J, Goldberg C, Robinson S, Spear S et al. (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van Strien M (2013) Advances in landscape genetic methods and theory: lessons leart from insects in agricultural landscapes. Ph.D. Dissertation. ETH Zürich

  • van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–23

    Article 

    Google Scholar 

  • Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8 25

  • Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sylvester EVA, Beiko RG, Bentzen P, Paterson I, Horne JB, Watson B et al. (2018) Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Mol Ecol 27:4026–4040

    PubMed 
    Article 

    Google Scholar 

  • Toloşi L, Lengauer T (2011) Classification with correlated features: Unreliability of feature ranking and solutions. Bioinformatics 27:1986–1994

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Travis JMJ, Murrell DJ, Dytham C (1999) The evolution of density–dependent dispersal. Proc R Soc Lond Ser B Biol Sci 266:1837–1842

    Article 

    Google Scholar 

  • Trexler KA (1975) The Tioga road: a history, 1883-1961. Yosemite Natural History Association, El Portal, CA

  • U.S. Fish & Wildlife Service (2014) Endangered and threatened wildlife and plants; endangered status for the Sierra Nevada yellow-legged frog and the northern distinct population segment of the mountain yellow-legged frog, and threatened status for the Yosemite toad: final rule. Fed Regist 79:1–56. https://www.federalregister.gov/documents/2014/04/29/2014-09488/endangered-and-threatened-wildlife-andplants-endangered-species-status-for-sierra-nevada

  • Vandergast AG, Bohonak AJ, Hathaway SA, Boys J, Fisher RN (2008) Are hotspots of evolutionary potential adequately protected in southern California? Biol Conserv 141:1648–1664

    Article 

    Google Scholar 

  • Viers JH, Purdy SE, Peek RA, Fryjoff-Hung A, Santos NR, Katz JV et al (2013) Montane meadows in the Sierra Nevada: changing hydroclimatic conditions and concepts for vulnerability assessment. Centre for Watershed Sciences report. Davis, CA

  • Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci USA 107:9689–9694

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang IJ (2012) Environmental and topographic variables shape genetic structure and effective population sizes in the endangered Yosemite toad. Divers Distrib 18:1033–1041

    Article 

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Inc., Sunderland, MA

  • Whitlock MC, Ingvarsson PK, Hatfield T (2000) Local drift load and the heterosis of interconnected populations. Heredity 84:452–457

    PubMed 
    Article 

    Google Scholar 

  • Wood SH (1975) Holocene stratigraphy and chronology of mountain meadows, Sierra Nevada, California. Ph.D. Dissertation. California Institute of Technology

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    J-WAFS awards $150K Solutions grant to Patrick Doyle and team for rapid removal of micropollutants from water

    Seed germination ecology of hood canarygrass (Phalaris paradoxa L.) and herbicide options for its control