Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6(1), 58. https://doi.org/10.1186/s40168-018-0445-0 (2018).
Google Scholar
Sapp, M., Ploch, S., Fiore-Donno, A. M., Bonkowski, M. & Rose, L. E. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ Microbiol 20(1), 30–43. https://doi.org/10.1111/1462-2920.13941 (2018).
Google Scholar
Herrera Paredes, S. & Lebeis, S. L. Giving back to the community: Microbial mechanisms of plant–soil interactions. Funct. Ecol. 30(7), 1043–1052. https://doi.org/10.1111/1365-2435.12684 (2016).
Google Scholar
Nath, A. & Sundaram, S. Microbiome community interactions with social forestry and agroforestry. In Microbial services in restoration ecology (eds Singh, J. S. & Vimal, S. R.) 71–82 (Elsevier, 2020).
Google Scholar
Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12(6), 804–821. https://doi.org/10.1016/j.molp.2019.05.006 (2019).
Google Scholar
Guttman, D. S., McHardy, A. C. & Schulze-Lefert, P. Microbial genome-enabled insights into plant–microorganism interactions. Nat. Rev. Genet. 15(12), 797–813. https://doi.org/10.1038/nrg3748 (2014).
Google Scholar
Lewin, S., Francioli, D., Ulrich, A. & Kolb, S. Crop host signatures reflected by co-association patterns of keystone bacteria in the rhizosphere microbiota. Environ. Microb. 16(1), 18. https://doi.org/10.1186/s40793-021-00387-w (2021).
Google Scholar
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1 (2020).
Google Scholar
Bardelli, T. et al. Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Sci. Total Environ. 575, 1041–1055. https://doi.org/10.1016/j.scitotenv.2016.09.176 (2017).
Google Scholar
Francioli, D., van Ruijven, J., Bakker, L. & Mommer, L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 48, 100987. https://doi.org/10.1016/j.funeco.2020.100987 (2020).
Google Scholar
Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20(1), 124–140. https://doi.org/10.1111/1462-2920.14031 (2018).
Google Scholar
Trivedi, P., Batista, B. D., Bazany, K. E. & Singh, B. K. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 234(6), 1951–1959. https://doi.org/10.1111/nph.18016 (2022).
Google Scholar
Hawkes, C. V. et al. Extension of plant phenotypes by the foliar microbiome. Annu. Rev. Plant Biol. 72(1), 823–846. https://doi.org/10.1146/annurev-arplant-080620-114342 (2021).
Google Scholar
Hunter, P. The revival of the extended phenotype: After more than 30 years, Dawkins’ extended phenotype hypothesis is enriching evolutionary biology and inspiring potential applications. EMBO Rep. 19(7), e46477. https://doi.org/10.15252/embr.201846477 (2018).
Google Scholar
Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68(5), 229–245. https://doi.org/10.1007/s13213-018-1331-5 (2018).
Google Scholar
Vacher, C. et al. The phyllosphere: Microbial jungle at the plant-climate interface. Annu. Rev. Ecol. Evol. Syst. 47(1), 1–24. https://doi.org/10.1146/annurev-ecolsys-121415-032238 (2016).
Google Scholar
Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant Microbe Interact. 28(3), 274–285. https://doi.org/10.1094/mpmi-10-14-0331-fi (2015).
Google Scholar
Pérez-Bueno, M. L., Pineda, M., Díaz-Casado, E. & Barón, M. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol. Plant. 153(1), 161–174. https://doi.org/10.1111/ppl.12237 (2015).
Google Scholar
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A Synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10(4), e1004283. https://doi.org/10.1371/journal.pgen.1004283 (2014).
Google Scholar
Giauque, H. & Hawkes, C. V. Climate affects symbiotic fungal endophyte diversity and performance. Am. J. Bot. 100(7), 1435–1444. https://doi.org/10.3732/ajb.1200568 (2013).
Google Scholar
Rodriguez, R. J. et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2(4), 404–416. https://doi.org/10.1038/ismej.2007.106 (2008).
Google Scholar
Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 230(6), 2129–2147. https://doi.org/10.1111/nph.17319 (2021).
Google Scholar
Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. 106(38), 16428–16433. https://doi.org/10.1073/pnas.0905240106%JProceedingsoftheNationalAcademyofSciences (2009).
Google Scholar
Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10(12), 828–840. https://doi.org/10.1038/nrmicro2910 (2012).
Google Scholar
Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. 111(38), 13715–13720. https://doi.org/10.1073/pnas.1216057111 (2014).
Google Scholar
Whipps, J. M., Hand, P., Pink, D. & Bending, G. D. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105(6), 1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x (2008).
Google Scholar
Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582), 364–369. https://doi.org/10.1038/nature16192 (2015).
Google Scholar
Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4(1), 27. https://doi.org/10.1186/s40168-016-0174-1 (2016).
Google Scholar
Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207(4), 1134–1144. https://doi.org/10.1111/nph.13418 (2015).
Google Scholar
Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J. & Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 10(1), 4135. https://doi.org/10.1038/s41467-019-11974-4 (2019).
Google Scholar
Latz, M. A. C. et al. Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Sci. Total Environ. 759, 143804. https://doi.org/10.1016/j.scitotenv.2020.143804 (2021).
Google Scholar
Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6(10), 1812–1822. https://doi.org/10.1038/ismej.2012.32 (2012).
Google Scholar
Bao, L. et al. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol. Ecol. 96, 3. https://doi.org/10.1093/femsec/fiaa017 (2020).
Google Scholar
Ding, T. & Melcher, U. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 11(3), e0150895. https://doi.org/10.1371/journal.pone.0150895 (2016).
Google Scholar
Perreault, R. & Laforest-Lapointe, I. Plant-microbe interactions in the phyllosphere: Facing challenges of the anthropocene. ISME J. https://doi.org/10.1038/s41396-021-01109-3 (2021).
Google Scholar
Redford, A. J. & Fierer, N. Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microb. Ecol. 58(1), 189–198. https://doi.org/10.1007/s00248-009-9495-y (2009).
Google Scholar
Campisano, A. et al. Temperature drives the assembly of endophytic communities’ seasonal succession. Environ. Microbiol. 19(8), 3353–3364. https://doi.org/10.1111/1462-2920.13843 (2017).
Google Scholar
Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392(1), 27–44. https://doi.org/10.1007/s11104-015-2503-8 (2015).
Google Scholar
Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11(1), 3044. https://doi.org/10.1038/s41467-020-16757-w (2020).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 37–42. https://doi.org/10.1038/nature01286 (2003).
Google Scholar
Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17(3), 610–621. https://doi.org/10.1111/1462-2920.12452 (2015).
Google Scholar
Francioli, D., Schulz, E., Buscot, F. & Reitz, T. Dynamics of soil bacterial communities over a vegetation season relate to both soil nutrient status and plant growth phenology. Microb. Ecol. 75(1), 216–227. https://doi.org/10.1007/s00248-017-1012-0 (2018).
Google Scholar
Breitkreuz, C., Buscot, F., Tarkka, M. & Reitz, T. Shifts between and among populations of wheat rhizosphere Pseudomonas, Streptomyces and Phyllobacterium suggest consistent phosphate mobilization at different wheat growth stages under abiotic stress. Front. Microbiol. 10, 3109–3109. https://doi.org/10.3389/fmicb.2019.03109 (2020).
Google Scholar
Na, X. et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front. Microbiol. 10, 828. https://doi.org/10.3389/fmicb.2019.00828 (2019).
Google Scholar
Ad-hoc-AG-Boden. Bodenkundliche Kartieranleitung 438 (Schweizerbart, 2005).
Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).
Google Scholar
Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W. & Prew, R. D. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J. Sci. Food Agric. 31(2), 117–132. https://doi.org/10.1002/jsfa.2740310203 (1980).
Google Scholar
Drew, M. C. Soil aeration and plant root metabolism. Soil Sci. 154(4), 259–268 (1992).
Google Scholar
Meyer, W. et al. Effect of irrigation on soil oxygen status and root and shoot growth of wheat in a clay soil. Aust. J. Agric. Res. https://doi.org/10.1071/AR9850171 (1985).
Google Scholar
Riehm, H. Bestimmung der laktatlöslichen Phosphorsäure in karbonathaltigen Böden. Phosphorsäure 1, 167–178. https://doi.org/10.1002/jpln.19420260107 (1943).
Google Scholar
Murphy, J., & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5 (1962).
Google Scholar
Francioli, D., Lentendu, G., Lewin, S. & Kolb, S. DNA metabarcoding for the characterization of terrestrial microbiota—pitfalls and solutions. Microorganisms 9(2), 361 (2021).
Google Scholar
Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41(3), 252–263. https://doi.org/10.1007/s002480000087 (2001).
Google Scholar
Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12(11), 2885–2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x (2010).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 1. https://doi.org/10.14806/ej.17.1.200 (2011).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581. https://doi.org/10.1038/Nmeth.3869 (2016).
Google Scholar
Francioli, D. et al. Flooding causes dramatic compositional shifts and depletion of putative beneficial bacteria on the spring wheat microbiota. Front. Microbiol. 12, 3371. https://doi.org/10.3389/fmicb.2021.773116 (2021).
Google Scholar
Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online 1–15 (Wiley, 2017).
Dray, S., Legendre, P. & Blanchet, G. Packfor: Forward Selection with Permutation. R package version 0.0‐8/r100 ed. (2011).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. ed. (2018).
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).
Google Scholar
Lahti, L. & Sudarshan, S. Tools for Microbiome Analysis in R. Version 2.1.28. ed. (2020).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Chen, S. et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7(1), 136. https://doi.org/10.1186/s40168-019-0750-2 (2019).
Google Scholar
Wang, J. et al. Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity. Front. Microbiol. 7, 1207. https://doi.org/10.3389/fmicb.2016.01207 (2016).
Google Scholar
Comby, M., Lacoste, S., Baillieul, F., Profizi, C. & Dupont, J. Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Front. Microbiol. 7, 403. https://doi.org/10.3389/fmicb.2016.00403 (2016).
Google Scholar
Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405(1), 381–396. https://doi.org/10.1007/s11104-015-2495-4 (2016).
Google Scholar
Sapkota, R., Jørgensen, L. N. & Nicolaisen, M. Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01357 (2017).
Google Scholar
Chaudhry, V. et al. Shaping the leaf microbiota: Plant–microbe–microbe interactions. J. Exp. Bot. 72(1), 36–56. https://doi.org/10.1093/jxb/eraa417 (2020).
Google Scholar
Liu, Z., Cheng, R., Xiao, W., Guo, Q. & Wang, N. Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9(9), e107636. https://doi.org/10.1371/journal.pone.0107636 (2014).
Google Scholar
Rosa, M. et al. Soluble sugars. Plant Signal. Behav. 4(5), 388–393. https://doi.org/10.4161/psb.4.5.8294 (2009).
Google Scholar
Chen, H., Qualls, R. G. & Blank, R. R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat. Bot. 82(4), 250–268. https://doi.org/10.1016/j.aquabot.2005.02.013 (2005).
Google Scholar
Bacanamwo, M. & Purcell, L. C. Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J. Exp. Bot. 50(334), 689–696. https://doi.org/10.1093/jxb/50.334.689 (1999).
Google Scholar
Boem, F. H. G., Lavado, R. S. & Porcelli, C. A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop. Res. 47(2), 175–179. https://doi.org/10.1016/0378-4290(96)00025-1 (1996).
Google Scholar
Kozlowski, T. T. Plant responses to flooding of soil. Bioscience 34(3), 162–167. https://doi.org/10.2307/1309751 (1984).
Google Scholar
Topa, M. A. & Cheeseman, J. M. 32P uptake and transport to shoots in Pinuus serotina seedlings under aerobic and hypoxic growth conditions. Physiol. Plant. 87(2), 125–133. https://doi.org/10.1111/j.1399-3054.1993.tb00134.x (1993).
Google Scholar
Colmer, T. D. & Flowers, T. J. Flooding tolerance in halophytes. New Phytol. 179(4), 964–974. https://doi.org/10.1111/j.1469-8137.2008.02483.x (2008).
Google Scholar
Gibbs, J. & Greenway, H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30(1), 1–47. https://doi.org/10.1071/PP98095 (2003).
Google Scholar
Board, J. E. Waterlogging effects on plant nutrient concentrations in soybean. J. Plant Nutr. 31(5), 828–838. https://doi.org/10.1080/01904160802043122 (2008).
Google Scholar
Smethurst, C. F., Garnett, T. & Shabala, S. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1), 31–45. https://doi.org/10.1007/s11104-004-1082-x (2005).
Google Scholar
Thomson, C. J., Atwell, B. J. & Greenway, H. Response of wheat seedlings to low O2 concentrations in nutrient solution: II. K+/Na+ selectivity of root tissues. J. Exp. Bot. 40(9), 993–999. https://doi.org/10.1093/jxb/40.9.993 (1989).
Google Scholar
Barrett-Lennard, E. G. The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant Soil 253(1), 35–54. https://doi.org/10.1023/A:1024574622669 (2003).
Google Scholar
Granzow, S. et al. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front. Microbiol. 8, 902. https://doi.org/10.3389/fmicb.2017.00902 (2017).
Google Scholar
Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 1(3), 158–168. https://doi.org/10.1094/PBIOMES-05-17-0023-R (2017).
Google Scholar
Shade, A., McManus, P. S., Handelsman, J. & Zhou, J. Unexpected diversity during community succession in the apple flower microbiome. MBio 4(2), e00602-00612. https://doi.org/10.1128/mBio.00602-12 (2013).
Google Scholar
Guo, J. et al. Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New. Phytol. 230(5), 2047–2060. https://doi.org/10.1111/nph.17297 (2021).
Google Scholar
Allwood, J. W. et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115, 99–111. https://doi.org/10.1016/j.phytochem.2015.01.007 (2015).
Google Scholar
Li, Y. et al. Plant phenotypic traits eventually shape its microbiota: A common garden test. Front. Microbiol. 9, 2479. https://doi.org/10.3389/fmicb.2018.02479 (2018).
Google Scholar
Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9(1), 171. https://doi.org/10.1186/s40168-021-01118-6 (2021).
Google Scholar
Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65. https://doi.org/10.1016/j.jare.2019.03.003 (2019).
Google Scholar
Mathur, P., Mehtani, P. & Sharma, C. (2021). Leaf Endophytes and Their Bioactive Compounds. In Symbiotic Soil Microorganisms: Biology and Applications, (eds Shrivastava, N. et al.) 147–159 (Cham, Springer International Publishing, 2021).
Aquino, J., Junior, F. L. A., Figueiredo, M., De Alcântara Neto, F. & Araujo, A. Plant growth-promoting endophytic bacteria on maize and sorghum1. Pesq. Agrop. Trop. https://doi.org/10.1590/1983-40632019v4956241 (2019).
Google Scholar
Gamalero, E. et al. Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance. Appl. Sci. 10(17), 5767 (2020).
Google Scholar
Borah, A. & Thakur, D. Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front. Microbiol. 11, 318. https://doi.org/10.3389/fmicb.2020.00318 (2020).
Google Scholar
Haidar, B. et al. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol. Res. 208, 43–53. https://doi.org/10.1016/j.micres.2018.01.008 (2018).
Google Scholar
Bind, M. & Nema, S. Isolation and molecular characterization of endophytic bacteria from pigeon pea along with antimicrobial evaluation against Fusarium udum. J. Appl. Microbiol. Open Access 5, 163 (2019).
de Almeida Lopes, K. B. et al. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J. Appl. Microbiol. 125(5), 1466–1481. https://doi.org/10.1111/jam.14041 (2018).
Google Scholar
Müller, T. & Behrendt, U. Exploiting the biocontrol potential of plant-associated pseudomonads: A step towards pesticide-free agriculture?. Biol. Control 155, 104538. https://doi.org/10.1016/j.biocontrol.2021.104538 (2021).
Google Scholar
Safin, R. I. et al. Features of seeds microbiome for spring wheat varieties from different regions of Eurasia. In: International Scientific and Practical Conference “AgroSMART: Smart Solutions for Agriculture”, 766–770 (Atlantis Press).
Adler, P. B. & Drake, J. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172(5), E186–E195. https://doi.org/10.1086/591678 (2008).
Google Scholar
Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. R. Soc. B 284(1855), 20170507. https://doi.org/10.1098/rspb.2017.0507 (2017).
Google Scholar
Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. 115(6), E1157–E1165. https://doi.org/10.1073/pnas.1717617115 (2018).
Google Scholar
Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 232(3), 1123–1158. https://doi.org/10.1111/nph.17072 (2021).
Google Scholar
Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92(4), 303–311. https://doi.org/10.1139/cjb-2013-0194 (2014).
Google Scholar
Leff, J. W. et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12(7), 1794–1805. https://doi.org/10.1038/s41396-018-0089-x (2018).
Google Scholar
Ulbrich, T. C., Friesen, M. L., Roley, S. S., Tiemann, L. K. & Evans, S. E. Intraspecific variability in root traits and edaphic conditions influence soil microbiomes across 12 switchgrass cultivars. Phytobiom. J. 5(1), 108–120. https://doi.org/10.1094/pbiomes-12-19-0069-fi (2021).
Google Scholar
Arduini, I., Orlandi, C., Pampana, S. & Masoni, A. Waterlogging at tillering affects spike and spikelet formation in wheat. Crop Pasture Sci. 67(7), 703–711. https://doi.org/10.1071/CP15417 (2016).
Google Scholar
Ding, J. et al. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Res. 246, 107695. https://doi.org/10.1016/j.fcr.2019.107695 (2020).
Google Scholar
Malik, I., Colmer, T., Lambers, H. & Schortemeyer, M. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Austral. J. Plant Physiol. 28, 1121–1131. https://doi.org/10.1071/PP01089 (2001).
Google Scholar
Pampana, S., Masoni, A. & Arduini, I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res. Commun. 44(4), 706–716. https://doi.org/10.1556/0806.44.2016.026 (2016).
Google Scholar
Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115(18), E4284–E4293. https://doi.org/10.1073/pnas.1717308115%JProceedingsoftheNationalAcademyofSciences (2018).
Google Scholar
Angel, R. et al. The root-associated microbial community of the world’s highest growing vascular plants. Microb. Ecol. 72(2), 394–406. https://doi.org/10.1007/s00248-016-0779-8 (2016).
Google Scholar
Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16(2), e2003862. https://doi.org/10.1371/journal.pbio.2003862 (2018).
Google Scholar
Kuźniar, A. et al. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Syst. Appl. Microbiol. 43(1), 126025. https://doi.org/10.1016/j.syapm.2019.126025 (2020).
Google Scholar
Soldan, R. et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol. Res. 223–225, 33–43. https://doi.org/10.1016/j.micres.2019.03.008 (2019).
Google Scholar
Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7(1), 40–50. https://doi.org/10.1111/1758-2229.12181 (2015).
Google Scholar
Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, 6. https://doi.org/10.1093/femsec/fiw083 (2016).
Google Scholar
Eid, A. M. et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants 10(5), 935 (2021).
Google Scholar
Mareque, C. et al. The endophytic bacterial microbiota associated with sweet sorghum (Sorghum bicolor) is modulated by the application of chemical N fertilizer to the field. Int. J. Genom. 2018, 7403670. https://doi.org/10.1155/2018/7403670 (2018).
Google Scholar
Francioli, D. et al. Mineral vs organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446. https://doi.org/10.3389/fmicb.2016.01446 (2016).
Google Scholar
Schrey, S. D. & Tarkka, M. T. Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94(1), 11–19. https://doi.org/10.1007/s10482-008-9241-3 (2008).
Google Scholar
Patel, J. K., Madaan, S. & Archana, G. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215, 36–45. https://doi.org/10.1016/j.micres.2018.06.003 (2018).
Google Scholar
Yi, Y.-S. et al. Antifungal activity of Streptomyces sp. against Puccinia recondita causing wheat leaf rust. J. Microbiol. Biotechnol. 14(2), 422–425 (2004).
Google Scholar
Sperdouli, I. & Moustakas, M. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit. J. Plant. Res. 127(4), 481–489. https://doi.org/10.1007/s10265-014-0635-1 (2014).
Google Scholar
Source: Ecology - nature.com