Printzen, C. & Lumbsch, H. T. Molecular evidence for the diversification of extant lichens in the late cretaceous and tertiary. Mol. Phylogenet. Evol. 17, 379–387 (2000).
Google Scholar
Kraichak, E. et al. A Tale of two Hyper-diversities: Diversification dynamics of the two largest families of lichenized fungi. Sci. Rep. https://doi.org/10.1038/srep100288 (2015).
Google Scholar
Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & Clair, L. L. S. Pleistocene speciation in North American lichenized fungi and the the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8, e85240 (2013).
Google Scholar
Gaya, E. et al. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and bark-to-rock substrate shift. PNAS 112, 11600–11605 (2015).
Google Scholar
Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: Lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).
Google Scholar
Widhelm, T. J. et al. Oligocene origin and drivers for diversification in the genus Sticta (Lobariaceae, Ascomycota). Mol. Phylogenetic Evol. 126, 58–73 (2018).
Google Scholar
Vamosi, J. C. & Vamosi, S. M. Factors influencing diversification in angiosperms: At the crossroads of intrinsic and extrinsic traits. Am. J. Bot. 98, 460–471 (2011).
Google Scholar
Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).
Google Scholar
Karunarathne, P. et al. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann. Bot. 121, 1183–1196 (2018).
Google Scholar
Nakov, T., Beaulieu, J. & Alverson, A. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytol. 219, 462–473 (2018).
Google Scholar
Tripp, E. A. Is asexual reproduction an evolutionary dead end in lichens?. Lichenologist 48, 559–580 (2016).
Google Scholar
Tripp, E. A. & Lendemer, J. C. Twenty-seven modes of reproduction in the obligate lichen symbiosis. Brittonia 70, 1–14 (2018).
Google Scholar
Bowler, P. A. & Rundell, P. W. Reproductive strategies in lichens. Bot. J. Linn. Soc. 70, 325–340 (1975).
Google Scholar
Honegger, R. Developmental biology of lichens. New Phytol. 125, 659–677 (1993).
Google Scholar
Buschbom, J. & Mueller, G. M. Testing “Species Pair” hypotheses: Evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol. Biol. Evol. 23, 574–586. https://doi.org/10.1093/molbev/msj063 (2006).
Google Scholar
Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, Thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).
Google Scholar
Poelt, J. Flechtenflora und eiszeit in Europa. Phyton (Horn) 10, 206–214 (1963).
Stofer, S. et al. Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38, 331–353 (2006).
Google Scholar
Ludwig, L. R., Summerfield, T. C., Lord, J. M. & Singh, G. Characterization of the mating-type locus (MAT) reveals a heterothallic mating system in Knightiella splachnirima. Lichenologist 49, 373–385 (2017).
Google Scholar
Czarnota, P. The lichen genus Micarea (Lecanorales, Ascomycota) in Poland. Pol. Bot. Stud. 23, 1–190 (2007).
Czarnota, P. & Guzow-Krzemińska, B. A phylogenetic study of the Micarea prasina group shows that Micarea micrococca includes three distinct lineages. Lichenologist 42, 7–21 (2010).
Google Scholar
Sérusiaux, E., Brand, A. M., Motiejūnaitè, J., Orange, A. & Coppins, B. J. Lecidea doliiformis belongs to Micarea, Catillaria alba to Biatora and Biatora lignimollis occurs in Western Europe. Bryologist 113, 333–344 (2010).
Google Scholar
van den Boom, P., Brand, A., Coppins, B. & Sérusiaux, E. Two new species in the Micarea prasina group from Western Europe. Lichenologist 49, 13–25 (2017).
Google Scholar
Guzow-Krzemińska, B., Czarnota, P., Łubek, A. & Kukwa, M. Micarea soralifera sp. nov., a new sorediate species in the M. prasina group. Lichenologist 48, 161–169 (2016).
Google Scholar
Guzow-Krzemińska, B. et al. Understanding the evolution of phenotypical characters in the Micarea prasina group (Pilocarpaceae) and descriptions of six new species within the group. MycoKeys 57, 1–30 (2019).
Google Scholar
Kantvilas, G. & Coppins, B. J. Studies on Micarea in Australasia II. A synopsis of the genus in Tasmania, with the description of ten new species. Lichenologist 51, 431–481 (2019).
Google Scholar
Launis, A. & Myllys, L. Micarea fennica, a new lignicolous lichen species from Finland. Phytotaxa 409, 179–188 (2019).
Google Scholar
Launis, A., Pykälä, J., van den Boom, P., Sérusiaux, E. & Myllys, L. Four new epiphytic species in the Micarea prasina group from Europe. Lichenologist 51, 7–25 (2019).
Google Scholar
Launis, A. et al. Sharpening species boundaries in the Micarea prasina group, with a new circumscription of the type species M. prasina. Mycologia 111, 574–592 (2019).
Google Scholar
van den Boom, P., Guzow-Krzemińska, B. & Kukwa, M. Two new Micarea species (Pilocarpaceae) from Western Europe. Plant Fungal Syst. 65, 189–199. https://doi.org/10.35535/pfsyst-2020-0014 (2020).
Google Scholar
Kantelinen, A., Hyvärinen, M., Kirika, P. & Myllys, L. Four new Micarea species from the montane cloud forests of Taita Hills, Kenya. Lichenologist 53, 81–94. https://doi.org/10.1017/S0024282920000511 (2021).
Google Scholar
Coppins, B. J. A taxonomic study of the lichen genus Micarea in Europe. Bull. Br. Mus. (Nat. Hist.) Bot. 11, 17–214 (1983).
Launis, A. & Myllys, L. Micarea byssacea new to North America and Micarea hedlundii new to Maine, Michigan and Quebec. Opusc. Philolichenum 13, 84–90 (2014).
Myllys, L. & Launis, A. Additions to the diversity of lichens and lichenicolous fungi living on decaying wood in Finland. Graphis Scr. 30, 78–87 (2018).
Yahr, R., Florence, A., Škaloud, P. & Voytsekhovich, A. Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota). Lichenologist 47, 403–414 (2015).
Google Scholar
Spribille, T., Thor, G., Bunnell, F. L., Goward, T. & Björk, C. R. Lichens on dead wood: Species-substrate relationships in the epiphytic lichen floras of the Pacific Northwest and Fennoscandia. Ecography 31, 741–750 (2008).
Google Scholar
Resl, P., Fernańdez-Mendoza, F., Mayrhofer, H. & Spribille, T. The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc. R. Soc. B 285, 20180640. https://doi.org/10.1098/rspb.2018.0640 (2018).
Google Scholar
Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood 412 (Cambridge University Press, Cambridge, 2012).
Google Scholar
Russell, M. B., Woodall, C. W., Fraver, S. & D’Amato, A. W. Estimates of downed woody debris decay class transitions for forests across the eastern United States. Ecol. Model. 251, 22–31 (2013).
Google Scholar
Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US Forests. Ecosystems 17, 765–777 (2014).
Google Scholar
Zoller, S., Lutzoni, F. & Scheidegger, C. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol. Ecol. 8, 2049–2059 (1999).
Google Scholar
Honegger, R., Zippler, U., Gansner, H. & Scherrer, S. Mating systems in the genus Xanthoria (lichen forming Ascomycetes). Mycol. Res. 108, 480–488 (2004).
Google Scholar
Honegger, R. & Zippler, U. Mating systems in representatives of the Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycol. Res. 11, 424–432 (2007).
Google Scholar
Ament-Velásquez, S. L. et al. The plot thickens: Haploid and triploid-like thalli, hybridization, and biased mating Type Ratios in Letharia. Front. Fungal Biol. 2, 656386. https://doi.org/10.3389/ffunb.2021.656386 (2021).
Google Scholar
van den Boom, P. & Coppins, B. J. Micarea viridileprosa sp. nov., an overlooked lichen species from Western Europe. Lichenologist 33, 87–91 (2001).
Google Scholar
Simon, J.-C., Rispe, C. & Sunnucks, P. Ecology and evolution of sex in aphids. Trends Ecol. Evol. 17, 34–39 (2002).
Google Scholar
Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169, 157–168 (2008).
Google Scholar
Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700. https://doi.org/10.1111/J.1558-5646.2012.01715.X (2012).
Google Scholar
Dańko, A., Schaible, R. & Dańko, M. J. Salinity effects on survival and reproduction of hydrozoan Eleutheria dichotoma. Estuaries Coasts 43, 360–374. https://doi.org/10.1007/s12237-019-00675-2 (2020).
Google Scholar
Coppins, B. J. & Tønsberg, T. A new xanthone-containing Micarea from Northwest Europe and the Pacific Northwest of North America. Lichenologist 33, 93–96 (2001).
Google Scholar
Konoreva, L., Chesnokov, S., Kuznetsova, E. & Stepanchikova, I. Remarkable records of Micarea from the Russian Far East and significant extension of Micarea laeta and M. microareolata range. Botanica 25, 186–201 (2019).
Google Scholar
Weber, L., Printzen, C., Bässler, C. & Kantelinen, A. Seven Micarea (Pilocarpaceae) species new to Germany and notes on deficiently known species in the Bavarian forest. Herzogia 34, 5–17 (2021).
Google Scholar
van den Boom, P. Some interesting records of lichens and lichenicolous fungi from The Netherlands VI. Osten. Z. Pilzk. 12 (2003).
Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens 101 (British Lichen Society, London, 2010).
Meyer, B. & Printzen, C. Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32, 571–583 (2000).
Google Scholar
Culberson, C. F. & Kristinsson, H. D. A standardized method for the identification of lichen products. J. Chromatocraphy A 46, 85–93 (1970).
Google Scholar
Myllys, L. et al. Phylogeny of the genus Bryoria. Lichenologist 43, 617–638 (2011).
Google Scholar
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. Sequence insertion and ITS data provide congruent information in Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Mol. Phylogenetics Evol. 12, 295–309 (1999).
Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to the Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
Zoller, S., Scheidegger, C. & Sperisen, C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511–516 (1999).
Google Scholar
Leavitt, S. D., Johnson, L. A., Goward, T. & Clair, L. L. S. Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol. Phylogenetics Evol. 60(3), 317–332 (2011).
Google Scholar
Schmitt, I. et al. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23, 35–40 (2009).
Google Scholar
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).
Google Scholar
Kauff, F. & Lutzoni, F. Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): Among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol. Phylogenet. Evol. 25, 138–156 (2002).
Google Scholar
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump markov chain monte carlo. Mol. Biol. Evol. 21, 1123–1133. https://doi.org/10.1093/molbev/msh123 (2004).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior Summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
Google Scholar
Maddison, D. R. & Maddison, W. P. Mesquite: a modular system for evolutionary analysis. Version 3.40 http://mesquiteproject.org (2018).
Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. B. 255, 37–45 (1994).
Google Scholar
Source: Ecology - nature.com