in

Lichen speciation is sparked by a substrate requirement shift and reproduction mode differentiation

  • Printzen, C. & Lumbsch, H. T. Molecular evidence for the diversification of extant lichens in the late cretaceous and tertiary. Mol. Phylogenet. Evol. 17, 379–387 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kraichak, E. et al. A Tale of two Hyper-diversities: Diversification dynamics of the two largest families of lichenized fungi. Sci. Rep. https://doi.org/10.1038/srep100288 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & Clair, L. L. S. Pleistocene speciation in North American lichenized fungi and the the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8, e85240 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gaya, E. et al. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and bark-to-rock substrate shift. PNAS 112, 11600–11605 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: Lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Widhelm, T. J. et al. Oligocene origin and drivers for diversification in the genus Sticta (Lobariaceae, Ascomycota). Mol. Phylogenetic Evol. 126, 58–73 (2018).

    Article 

    Google Scholar 

  • Vamosi, J. C. & Vamosi, S. M. Factors influencing diversification in angiosperms: At the crossroads of intrinsic and extrinsic traits. Am. J. Bot. 98, 460–471 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karunarathne, P. et al. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann. Bot. 121, 1183–1196 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nakov, T., Beaulieu, J. & Alverson, A. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytol. 219, 462–473 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tripp, E. A. Is asexual reproduction an evolutionary dead end in lichens?. Lichenologist 48, 559–580 (2016).

    Article 

    Google Scholar 

  • Tripp, E. A. & Lendemer, J. C. Twenty-seven modes of reproduction in the obligate lichen symbiosis. Brittonia 70, 1–14 (2018).

    Article 

    Google Scholar 

  • Bowler, P. A. & Rundell, P. W. Reproductive strategies in lichens. Bot. J. Linn. Soc. 70, 325–340 (1975).

    Article 

    Google Scholar 

  • Honegger, R. Developmental biology of lichens. New Phytol. 125, 659–677 (1993).

    PubMed 
    Article 

    Google Scholar 

  • Buschbom, J. & Mueller, G. M. Testing “Species Pair” hypotheses: Evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol. Biol. Evol. 23, 574–586. https://doi.org/10.1093/molbev/msj063 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, Thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Poelt, J. Flechtenflora und eiszeit in Europa. Phyton (Horn) 10, 206–214 (1963).

    Google Scholar 

  • Stofer, S. et al. Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38, 331–353 (2006).

    Article 

    Google Scholar 

  • Ludwig, L. R., Summerfield, T. C., Lord, J. M. & Singh, G. Characterization of the mating-type locus (MAT) reveals a heterothallic mating system in Knightiella splachnirima. Lichenologist 49, 373–385 (2017).

    Article 

    Google Scholar 

  • Czarnota, P. The lichen genus Micarea (Lecanorales, Ascomycota) in Poland. Pol. Bot. Stud. 23, 1–190 (2007).

    Google Scholar 

  • Czarnota, P. & Guzow-Krzemińska, B. A phylogenetic study of the Micarea prasina group shows that Micarea micrococca includes three distinct lineages. Lichenologist 42, 7–21 (2010).

    Article 

    Google Scholar 

  • Sérusiaux, E., Brand, A. M., Motiejūnaitè, J., Orange, A. & Coppins, B. J. Lecidea doliiformis belongs to Micarea, Catillaria alba to Biatora and Biatora lignimollis occurs in Western Europe. Bryologist 113, 333–344 (2010).

    Article 

    Google Scholar 

  • van den Boom, P., Brand, A., Coppins, B. & Sérusiaux, E. Two new species in the Micarea prasina group from Western Europe. Lichenologist 49, 13–25 (2017).

    Article 

    Google Scholar 

  • Guzow-Krzemińska, B., Czarnota, P., Łubek, A. & Kukwa, M. Micarea soralifera sp. nov., a new sorediate species in the M. prasina group. Lichenologist 48, 161–169 (2016).

    Article 

    Google Scholar 

  • Guzow-Krzemińska, B. et al. Understanding the evolution of phenotypical characters in the Micarea prasina group (Pilocarpaceae) and descriptions of six new species within the group. MycoKeys 57, 1–30 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kantvilas, G. & Coppins, B. J. Studies on Micarea in Australasia II. A synopsis of the genus in Tasmania, with the description of ten new species. Lichenologist 51, 431–481 (2019).

    Article 

    Google Scholar 

  • Launis, A. & Myllys, L. Micarea fennica, a new lignicolous lichen species from Finland. Phytotaxa 409, 179–188 (2019).

    Article 

    Google Scholar 

  • Launis, A., Pykälä, J., van den Boom, P., Sérusiaux, E. & Myllys, L. Four new epiphytic species in the Micarea prasina group from Europe. Lichenologist 51, 7–25 (2019).

    Article 

    Google Scholar 

  • Launis, A. et al. Sharpening species boundaries in the Micarea prasina group, with a new circumscription of the type species M. prasina. Mycologia 111, 574–592 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van den Boom, P., Guzow-Krzemińska, B. & Kukwa, M. Two new Micarea species (Pilocarpaceae) from Western Europe. Plant Fungal Syst. 65, 189–199. https://doi.org/10.35535/pfsyst-2020-0014 (2020).

    Article 

    Google Scholar 

  • Kantelinen, A., Hyvärinen, M., Kirika, P. & Myllys, L. Four new Micarea species from the montane cloud forests of Taita Hills, Kenya. Lichenologist 53, 81–94. https://doi.org/10.1017/S0024282920000511 (2021).

    Article 

    Google Scholar 

  • Coppins, B. J. A taxonomic study of the lichen genus Micarea in Europe. Bull. Br. Mus. (Nat. Hist.) Bot. 11, 17–214 (1983).

    Google Scholar 

  • Launis, A. & Myllys, L. Micarea byssacea new to North America and Micarea hedlundii new to Maine, Michigan and Quebec. Opusc. Philolichenum 13, 84–90 (2014).

    Google Scholar 

  • Myllys, L. & Launis, A. Additions to the diversity of lichens and lichenicolous fungi living on decaying wood in Finland. Graphis Scr. 30, 78–87 (2018).

    Google Scholar 

  • Yahr, R., Florence, A., Škaloud, P. & Voytsekhovich, A. Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota). Lichenologist 47, 403–414 (2015).

    Article 

    Google Scholar 

  • Spribille, T., Thor, G., Bunnell, F. L., Goward, T. & Björk, C. R. Lichens on dead wood: Species-substrate relationships in the epiphytic lichen floras of the Pacific Northwest and Fennoscandia. Ecography 31, 741–750 (2008).

    Article 

    Google Scholar 

  • Resl, P., Fernańdez-Mendoza, F., Mayrhofer, H. & Spribille, T. The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc. R. Soc. B 285, 20180640. https://doi.org/10.1098/rspb.2018.0640 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood 412 (Cambridge University Press, Cambridge, 2012).

    Book 

    Google Scholar 

  • Russell, M. B., Woodall, C. W., Fraver, S. & D’Amato, A. W. Estimates of downed woody debris decay class transitions for forests across the eastern United States. Ecol. Model. 251, 22–31 (2013).

    Article 

    Google Scholar 

  • Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US Forests. Ecosystems 17, 765–777 (2014).

    CAS 
    Article 

    Google Scholar 

  • Zoller, S., Lutzoni, F. & Scheidegger, C. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol. Ecol. 8, 2049–2059 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Honegger, R., Zippler, U., Gansner, H. & Scherrer, S. Mating systems in the genus Xanthoria (lichen forming Ascomycetes). Mycol. Res. 108, 480–488 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Honegger, R. & Zippler, U. Mating systems in representatives of the Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycol. Res. 11, 424–432 (2007).

    Article 
    CAS 

    Google Scholar 

  • Ament-Velásquez, S. L. et al. The plot thickens: Haploid and triploid-like thalli, hybridization, and biased mating Type Ratios in Letharia. Front. Fungal Biol. 2, 656386. https://doi.org/10.3389/ffunb.2021.656386 (2021).

    Article 

    Google Scholar 

  • van den Boom, P. & Coppins, B. J. Micarea viridileprosa sp. nov., an overlooked lichen species from Western Europe. Lichenologist 33, 87–91 (2001).

    Article 

    Google Scholar 

  • Simon, J.-C., Rispe, C. & Sunnucks, P. Ecology and evolution of sex in aphids. Trends Ecol. Evol. 17, 34–39 (2002).

    Article 

    Google Scholar 

  • Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169, 157–168 (2008).

    Article 

    Google Scholar 

  • Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700. https://doi.org/10.1111/J.1558-5646.2012.01715.X (2012).

    Article 
    PubMed 

    Google Scholar 

  • Dańko, A., Schaible, R. & Dańko, M. J. Salinity effects on survival and reproduction of hydrozoan Eleutheria dichotoma. Estuaries Coasts 43, 360–374. https://doi.org/10.1007/s12237-019-00675-2 (2020).

    CAS 
    Article 

    Google Scholar 

  • Coppins, B. J. & Tønsberg, T. A new xanthone-containing Micarea from Northwest Europe and the Pacific Northwest of North America. Lichenologist 33, 93–96 (2001).

    Article 

    Google Scholar 

  • Konoreva, L., Chesnokov, S., Kuznetsova, E. & Stepanchikova, I. Remarkable records of Micarea from the Russian Far East and significant extension of Micarea laeta and M. microareolata range. Botanica 25, 186–201 (2019).

    Article 

    Google Scholar 

  • Weber, L., Printzen, C., Bässler, C. & Kantelinen, A. Seven Micarea (Pilocarpaceae) species new to Germany and notes on deficiently known species in the Bavarian forest. Herzogia 34, 5–17 (2021).

    Article 

    Google Scholar 

  • van den Boom, P. Some interesting records of lichens and lichenicolous fungi from The Netherlands VI. Osten. Z. Pilzk. 12 (2003).

  • Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens 101 (British Lichen Society, London, 2010).

    Google Scholar 

  • Meyer, B. & Printzen, C. Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32, 571–583 (2000).

    Article 

    Google Scholar 

  • Culberson, C. F. & Kristinsson, H. D. A standardized method for the identification of lichen products. J. Chromatocraphy A 46, 85–93 (1970).

    CAS 
    Article 

    Google Scholar 

  • Myllys, L. et al. Phylogeny of the genus Bryoria. Lichenologist 43, 617–638 (2011).

    Article 

    Google Scholar 

  • Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. Sequence insertion and ITS data provide congruent information in Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Mol. Phylogenetics Evol. 12, 295–309 (1999).

    CAS 
    Article 

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to the Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).

    Google Scholar 

  • Zoller, S., Scheidegger, C. & Sperisen, C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511–516 (1999).

    Article 

    Google Scholar 

  • Leavitt, S. D., Johnson, L. A., Goward, T. & Clair, L. L. S. Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol. Phylogenetics Evol. 60(3), 317–332 (2011).

    Article 

    Google Scholar 

  • Schmitt, I. et al. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23, 35–40 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kauff, F. & Lutzoni, F. Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): Among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol. Phylogenet. Evol. 25, 138–156 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump markov chain monte carlo. Mol. Biol. Evol. 21, 1123–1133. https://doi.org/10.1093/molbev/msh123 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior Summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maddison, D. R. & Maddison, W. P. Mesquite: a modular system for evolutionary analysis. Version 3.40 http://mesquiteproject.org (2018).

  • Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. B. 255, 37–45 (1994).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Kerry Emanuel: A climate scientist and meteorologist in the eye of the storm

    Better living through multicellular life cycles