in

Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 43 (2021).

    ADS 
    Article 

    Google Scholar 

  • Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010). Adaptation of Forests and Forest Management to Changing Climate.

    Article 

    Google Scholar 

  • Franklin, J. F., Mitchell, R. J. & Palik, B. J. Natural disturbance and stand development principles for ecological forestry. General Technical Report. NRS-19. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 44. p. 19 (2007).

  • Westoby, M., Jurado, E. & Leishman, M. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 7, 368–372 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).

    Article 

    Google Scholar 

  • Lord, J., Westoby, M. & Leishman, M. Seed size and phylogeny in six temperate floras: Constraints, niche conservatism, and adaptation. Am. Nat. 146, 349–364 (1995).

    Article 

    Google Scholar 

  • Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).

    Article 

    Google Scholar 

  • Tautenhahn, S. et al. On the biogeography of seed mass in germany – distribution patterns and environmental correlates. Ecography 31, 457–468 (2008).

    Article 

    Google Scholar 

  • Lidgard, S. & Crane, P. R. Quantitative analyses of the early angiosperm radiation. Nature 331, 344–346 (1988).

    ADS 
    Article 

    Google Scholar 

  • Crisp, M. D. & Cook, L. G. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol. 192, 997–1009 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stearns, S. C. Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51, 3–47 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).

    Article 

    Google Scholar 

  • Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).

    Article 

    Google Scholar 

  • Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Thomas, S. C. Age-Related Changes in Tree Growth and Functional Biology: The Role of Reproduction, p. 33-64 (Springer Netherlands, 2011).

  • Wenk, E. H. & Falster, D. S. Quantifying and understanding reproductive allocation schedules in plants. Ecol. Evol. 5, 5521–5538 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Turnbull, L. A., Rees, M. & Crawley, M. J. Seed mass and the competition/colonization trade-off: a sowing experiment. J. Ecol. 87, 899–912 (1999).

    Article 

    Google Scholar 

  • Moles, A., Falster, D., Leishman, M. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 92, 384–396 (2004).

    Article 

    Google Scholar 

  • Qiu, T. et al. Is there tree senescence? the fecundity evidence. Proc. Natl Acad. Sci. USA 118, e2106130118 (2021).

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar 

  • Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001).

    Article 

    Google Scholar 

  • Turnbull, L. A., Coomes, D., Hector, A. & Rees, M. Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. J. Ecol. 92, 97–109 (2004).

    Article 

    Google Scholar 

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Poorter, L. et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Hanley, M. E., Cook, B. I. & Fenner, M. Climate variation, reproductive frequency and acorn yield in english oaks. J. Plant Ecol. 12, 542–549 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kattge, J. et al. Try plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    ADS 
    Article 

    Google Scholar 

  • Ran, E., Arnon, D., Alon, B.-G., Amnon, S. & Uri, Y. Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 133, 639–647 (2008).

    Article 

    Google Scholar 

  • Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The role of nutrients, productivity and climate in determining tree fruit production in european forests. New Phytol. 213, 669–679 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Fortier, R. & Wright, S. J. Nutrient limitation of plant reproduction in a tropical moist forest. Ecology 102, e03469 (2021).

  • Canham, C. D., Ruscoe, W. A., Wright, E. F. & Wilson, D. J. Spatial and temporal variation in tree seed production and dispersal in a new zealand temperate rainforest. Ecosphere 5, art49 (2014).

    Article 

    Google Scholar 

  • Pérez-Ramos, I. M., Aponte, C., García, L. V., Padilla-Díaz, C. M. & Marañón, T. Why is seed production so variable among individuals? a ten-year study with oaks reveals the importance of soil environment. PLoS ONE 9, e115371 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    ADS 
    Article 

    Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).

    Article 
    CAS 

    Google Scholar 

  • Fisher, R. A. et al. Vegetation demographics in earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    ADS 
    Article 

    Google Scholar 

  • Hanbury-Brown, A., Ward, R. & Kueppers, L. M. Future forests within earth system models: regeneration processes critical to prediction. New Phytol. in press https://doi.org/10.1111/nph.18131 (2022).

  • Stiles, W. C. & Reid, W. S. Orchard nutrition management. Inf. Bull. (1991). https://ecommons.cornell.edu/bitstream/handle/1813/3305/Orchard%20Nutrition%20Management.pdf?sequence=2&isAllowed=y.

  • Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).

    Article 

    Google Scholar 

  • Neilsen, D. & Neilsen, G. Efficient use of nitrogen and water in high-density apple orchards. HortTechnology 12, 19 (2002).

    Article 

    Google Scholar 

  • Rubio Ames, Z., Brecht, J. K. & Olmstead, M. A. Nitrogen fertilization rates in a subtropical peach orchard: effects on tree vigor and fruit quality. J. Sci. Food Agric. 100, 527–539 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).

    Article 

    Google Scholar 

  • Seyednasrollah, B. & Clark, J. S. Where resource-acquisitive species are located: the role of habitat heterogeneity. Geophys. Res. Lett. 47, e2020GL087626 (2020).

  • Rosecrance, R. C., Weinbaum, S. A. & Brown, P. H. Alternate bearing affects nitrogen, phosphorus, potassium and starch storage pools in mature pistachio trees. Ann. Bot. 82, 463–470 (1998).

    Article 

    Google Scholar 

  • Sala, A., Hopping, K., McIntire, E. J. B., Delzon, S. & Crone, E. E. Masting in whitebark pine (pinus albicaulis) depletes stored nutrients. New Phytol. 196, 189–199 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • LaDeau, S. L. & Clark, J. S. Rising co2 levels and the fecundity of forest trees. Science 292, 95–8 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Callahan, H. S., Del Fierro, K., Patterson, A. E. & Zafar, H. Impacts of elevated nitrogen inputs on oak reproductive and seed ecology. Glob. Change Biol. 14, 285–293 (2008).

    ADS 
    Article 

    Google Scholar 

  • Lambers, H. & Poorter, H. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences, vol. 23, 187-261 (Academic Press, 1992).

  • Hengl, T. et al. Soilgrids250m: global gridded soil information based on machine learning. PLoS ONE 12, 1–40 (2017).

    Article 
    CAS 

    Google Scholar 

  • Sharma, A., Weindorf, D. C., Wang, D. D. & Chakraborty, S. Characterizing soils via portable x-ray fluorescence spectrometer: 4. cation exchange capacity (cec). Geoderma 239, 130–134 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Hazelton, P. & Murphy, B. Interpreting Soil Test Results: What Do All The Numbers Mean? (CSIRO publishing, 2016).

  • Chowdhury, S. et al. Chapter Two – Role Of Cultural And Nutrient Management Practices In Carbon Sequestration In Agricultural Soil, vol. 166, 131-196 (Academic Press, 2021).

  • Clark, J. S., Nuñez, C. L. & Tomasek, B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecol. Monogr. 89, e01381 (2019).

    Article 

    Google Scholar 

  • Burns, R. M. Silvics Of North America (US Department of Agriculture, Forest Service, 1990).

  • Koenig, W. D. & Knops, J. M. H. Seed-crop size and eruptions of north american boreal seed-eating birds. J. Anim. Ecol. 70, 609–620 (2001).

    Article 

    Google Scholar 

  • Greene, D. F. & Johnson, E. A. Estimating the mean annual seed production of trees. Ecology 75, 642–647 (1994).

    Article 

    Google Scholar 

  • Lord, J. M. & Westoby, M. Accessory costs of seed production and the evolution of angiosperms. Evol. Int. J. Org. Evol. 66, 200–210 (2012).

    Article 

    Google Scholar 

  • Hulme, P. & Benkman, C. Granivory. vol. 23, 132-154 (Oxford: Blackwell, 2002).

  • Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).

    Article 

    Google Scholar 

  • Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Davies, T. J. et al. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA 101, 1904–1909 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Berendse, F. & Scheffer, M. The angiosperm radiation revisited, an ecological explanation for darwin’s ‘abominable mystery’. Ecol. Lett. 12, 865–872 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a co2-enriched atmosphere. Nature 411, 469–472 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to co2. Nature 440, 922–925 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Elser, J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).

    Article 

    Google Scholar 

  • Niklas, K. J., Owens, T., Reich, P. B. & Cobb, E. D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 8, 636–642 (2005).

    Article 

    Google Scholar 

  • Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Weinbaum, S. A., Johnson, R. S. & DeJong, T. M. Causes and consequences of overfertilization in orchards. HortTechnology 2, 112b (1992).

    Article 

    Google Scholar 

  • Fernandez-Escobar, R. et al. Olive oil quality decreases with nitrogen over-fertilization. HortScience 41, 215 (2006).

    CAS 
    Article 

    Google Scholar 

  • Han, Q., Kabeya, D., Iio, A. & Kakubari, Y. Masting in fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiol. 28, 1269–1276 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670–681 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leeper, A. C., Lawrence, B. A. & LaMontagne, J. M. Plant-available soil nutrients have a limited influence on cone production patterns of individual white spruce trees. Oecologia 194, 101–111 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).

    Article 

    Google Scholar 

  • Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Brodribb, T. J., Pittermann, J. & Coomes, D. A. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673–694 (2012).

    Article 

    Google Scholar 

  • Clark, J. S., Macklin, E. & Wood, L. Stages and spatial scales of recruitment limitation in southern appalachian forests. Ecol. Monogr. 68, 213–235 (1998).

    Article 

    Google Scholar 

  • McEuen, A. B. & Curran, L. M. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85, 507–518 (2004).

    Article 

    Google Scholar 

  • Emsweller, L. N., Gorchov, D. L., Zhang, Q., Driscoll, A. G. & Hughes, M. R. Seed rain and disturbance impact recruitment of invasive plants in upland forest. Invasive Plant Sci. Manag. 11, 69–81 (2018).

    Article 

    Google Scholar 

  • Lindgren, s, Eriksson, O. & Moen, J. The impact of disturbance and seed availability on germination of alpine vegetation in the scandinavian mountains. Arct. Antarct. Alp. Res. 39, 449–454 (2007).

    Article 

    Google Scholar 

  • Cai, W. H., Liu, Z., Yang, Y. Z. & Yang, J. Does environment filtering or seed limitation determine post-fire forest recovery patterns in boreal larch forests? Front. Plant Sci. 9, 1318 (2018).

  • Darwin, C. On the Origin of Species (John Murray, 1859).

  • Black, M. Darwin and seeds. Seed Sci. Res. 19, 193–199 (2009).

    Article 

    Google Scholar 

  • FAO. Global forest resources assessment 2020-key findings. un food and agriculture organization. Report (2020).

  • Payn, T. et al. Changes in planted forests and future global implications. For. Ecol. Manag. 352, 57–67 (2015).

    Article 

    Google Scholar 

  • Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the united states. Glob. Change Biol. 22, 2329–2352 (2016).

    ADS 
    Article 

    Google Scholar 

  • Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of northern hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).

    Article 

    Google Scholar 

  • Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • North, M. P. et al. Tamm review: reforestation for resilience in dry western u.s. forests. For. Ecol. Manag. 432, 209–224 (2019).

    Article 

    Google Scholar 

  • Seidl, R., Rammer, W. & Spies, T. A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 24, 2063–2077 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Serra-Diaz, J. M. et al. Averaged 30 year climate change projections mask opportunities for species establishment. Ecography 39, 844–845 (2016).

    Article 

    Google Scholar 

  • Davis, F. W. et al. Shrinking windows of opportunity for oak seedling establishment in southern california mountains. Ecosphere 7, e01573 (2016).

    Google Scholar 

  • LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Clark, J. S. et al. Continent-wide tree fecundity driven by indirect climate effects. Nat. Commun. 12, 1242 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brady, N. C., Weil, R. R. & Weil, R. R. The Nature And Properties Of Soils, vol. 13 (Prentice Hall Upper Saddle River, 2008).

  • Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007). https://doi.org/10.1029/2005RG000183.

  • Clark, J. S. Landscape interactions among nitrogen mineralization, species composition, and long-term fire frequency. Biogeochemistry 11, 1–22 (1990).

    Article 

    Google Scholar 

  • Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–1991 (2014).

    ADS 
    Article 

    Google Scholar 

  • Begueria, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (spei) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article 

    Google Scholar 

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schneider, R., Calama, R. & Martin-Ducup, O. Understanding tree-to-tree variations in stone pine (pinus pinea l.) cone production using terrestrial laser scanner. Remote Sens. 12, 173 (2020).

    Article 

    Google Scholar 

  • Gavranović, A., Bogdan, S., Lanšćak, M., Čehulić, I. & Ivanković, M. Seed yield and morphological variations of beechnuts in four european beech (fagus sylvatica l.) populations in croatia. South-East Eur. For. 9, 17–27 (2018).

    Article 

    Google Scholar 

  • Maitner, B. S. et al. The bien r package: a tool to access the botanical information and ecology network (bien) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Article 

    Google Scholar 

  • Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494 (1999).

    Article 

    Google Scholar 

  • LePage, P. T., Canham, C. D., Coates, K. D. & Bartemucci, P. Seed abundance versus substrate limitation of seedling recruitment in northern temperate forests of british columbia. Can. J. For. Res. 30, 415–427 (2000).

    Article 

    Google Scholar 

  • Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).

    Article 

    Google Scholar 

  • Muller-Landau, H. C., Wright, S. J., Calderon, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667 (2008).

    Article 

    Google Scholar 

  • Jones, F. A. & Muller-Landau, H. C. Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. J. Ecol. 96, 642–652 (2008).

    Article 

    Google Scholar 

  • Clark, J. S. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clark, J. S. et al. High-dimensional coexistence based on individual variation: a synthesis of evidence. Ecol. Monogr. 80, 569–608 (2010).

    Article 

    Google Scholar 

  • Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–91 (2014).

    ADS 
    Article 

    Google Scholar 

  • Minor, D. M. & Kobe, R. K. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecol. Evol. 9, 1458–1472 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: an r package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article 

    Google Scholar 

  • Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).

    Article 

    Google Scholar 

  • Tung Ho, L. S. & Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    Article 

    Google Scholar 

  • Clark, J. S. Data from: continent-wide tree fecundity driven by indirect climate effects https://doi.org/10.7924/r4348ph5t (2020).

  • Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China

    Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics