in

Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

  • Haque, M. N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60, 1–10. https://doi.org/10.1186/s40781-018-0175-7(2018) (2018).

    Article 

    Google Scholar 

  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press (in press).

  • Lauder, A. R. et al. Offsetting methane emissions—An alternative to emission equivalence metrics. Int. J. Greenh. 12, 419–429. https://doi.org/10.1016/j.ijggc.2012.11.028 (2013).

    CAS 
    Article 

    Google Scholar 

  • Hill, J., McSweeney, C., Wright, A. G., Bishop-Hurley, G. & Kalantar-Zadeh, K. Measuring methane production from ruminants. Trends Biotechnol. 34, 26–35. https://doi.org/10.1016/j.tibtech.2015.10.004 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob Change Biol. 24, 4185–4194. https://doi.org/10.1111/gcb.14321 (2018).

    ADS 
    Article 

    Google Scholar 

  • Naumann, H. D., Tedeschi, L. O., Zeller, W. E. & Huntley, N. F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. de Zootec. 46, 929–949. https://doi.org/10.1590/S1806-92902017001200009 (2017).

    Article 

    Google Scholar 

  • Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010–2037. https://doi.org/10.1002/jsfa.2577 (2006).

    CAS 
    Article 

    Google Scholar 

  • Burggraaf, V. T. et al. Morphology and agronomic performance of white clover with increased flowering and condensed tannin concentration. N. Z. J. Agric. Res. 49, 147–155. https://doi.org/10.1080/00288233.2006.9513704 (2006).

    CAS 
    Article 

    Google Scholar 

  • Einarsson, R. et al. Crop production and nitrogen use in European cropland and grassland 1961–2019. Sci. Data 8, 288. https://doi.org/10.1038/s41597-021-01061-z (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salminen, J.-P. & Karonen, M. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol. 25, 325–338. https://doi.org/10.1111/j.1365-2435.2010.01826.x (2011).

    Article 

    Google Scholar 

  • Zeller, W. E. Activity, purification, and analysis of condensed tannins: current state of affairs and future endeavors. Crop Sci. 59, 886–904. https://doi.org/10.2135/cropsci2018.05.0323 (2019).

    CAS 
    Article 

    Google Scholar 

  • Barbehenn, R. V. & Peter Constabel, C. Tannins in plant–herbivore interactions. Phytochemistry 72, 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chung, Y. H. et al. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa1. J. Anim. Sci. 91, 4861–4874. https://doi.org/10.2527/jas.2013-6498 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Christensen, R. G. et al. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows1. J. Dairy Sci. 98, 7982–7992. https://doi.org/10.3168/jds.2015-9348 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jonker, A. & Yu, P. The occurrence, biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. Int. J. Mol. Sci. 18, 1105. https://doi.org/10.3390/ijms18051105 (2017).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81, 263–272. https://doi.org/10.1017/S0007114599000501 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Verma, S., Taube, F. & Malisch, C. S. Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability 13, 2743. https://doi.org/10.3390/su13052743 (2021).

    CAS 
    Article 

    Google Scholar 

  • Malisch, C. S. et al. Large variability of proanthocyanidin content and composition in Sainfoin (Onobrychis viciifolia). J. Agric. Food Chem. 63, 10234–10242. https://doi.org/10.1021/acs.jafc.5b04946 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verma, S., Salminen, J.-P., Taube, F. & Malisch, C. S. Large inter- and intraspecies variability of polyphenols and proanthocyanidins in eight temperate forage species indicates potential for their exploitation as nutraceuticals. J. Agric. Food Chem. 69, 12445–12455. https://doi.org/10.1021/acs.jafc.1c03898 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lorenz, H., Reinsch, T., Kluß, C., Taube, F. & Loges, R. Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley?. Sustainability 12, 5842. https://doi.org/10.3390/su12145842 (2020).

    Article 

    Google Scholar 

  • Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).

    Article 

    Google Scholar 

  • Mueller-Harvey, I. et al. Benefits of condensed tannins in forage legumes fed to ruminants : Importance of structure, concentration and diet compsition. Crop Sci. 59, 861–885. https://doi.org/10.2135/cropsci2017.06.0369 (2017).

    CAS 
    Article 

    Google Scholar 

  • Loza, C. et al. Assessing the potential of diverse forage mixtures to reduce enteric methane emissions in vitro. Animals 11, 1126. https://doi.org/10.3390/ani11041126 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Min, B. R. et al. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutr. 6, 231–236. https://doi.org/10.1016/j.aninu.2020.05.002 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Gastelen, S., Dijkstra, J. & Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?. J. Dairy Sci. 102, 6109–6130. https://doi.org/10.3168/jds.2018-15785 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hatew, B. et al. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. Feed Sci. Technol. 202, 20–31. https://doi.org/10.1016/j.anifeedsci.2015.01.012 (2015).

    CAS 
    Article 

    Google Scholar 

  • Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2, 160–183. https://doi.org/10.3390/ani2020160 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dewhurst, R. J., Delaby, L., Moloney, A., Boland, T. & Lewis, E. Nutritive value of forage legumes used for grazing and silage. Irish J. Agric. Food Res. 48, 167–187 (2009).

    CAS 

    Google Scholar 

  • Hakl, J., Fuksa, P., Konečná, J. & Šantrůček, J. Differences in the crude protein fractions of lucerne leaves and stems under different stand structures. Grass Forage Sci. 71, 413–423. https://doi.org/10.1111/gfs.12192 (2016).

    CAS 
    Article 

    Google Scholar 

  • Jayanegara, A., Makkar, H. & Becker, K. The use of principal component analysis in identifying and integrating variables related to forage quality and methane production. J. Indones. Trop. Anim. 34, 241–247. https://doi.org/10.14710/jitaa.34.4.241-247 (2009).

    Article 

    Google Scholar 

  • Maccarana, L. et al. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach. J. Anim. Sci. Biotechnol. 7, 35–35. https://doi.org/10.1186/s40104-016-0094-8 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baruah, L., Malik, P. K., Kolte, A. P., Dhali, A. & Bhatta, R. Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro. Vet. World 11, 809–818. https://doi.org/10.14202/vetworld.2018.809-818 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hassanat, F. & Benchaar, C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93, 332–339. https://doi.org/10.1002/jsfa.5763 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Naumann, H. et al. Relationships between structures of condensed tannins from texas legumes and methane production during in vitro rumen digestion. Molecules 23, 2123. https://doi.org/10.3390/molecules23092123 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Jayanegara, A., Makkar, H. P. S. & Becker, K. Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Media Peternakan 38, 57–63. https://doi.org/10.5398/medpet.2015.38.1.57 (2015).

    Article 

    Google Scholar 

  • Jayanegara, A., Goel, G., Makkar, H. P. S. & Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209, 60–68. https://doi.org/10.1016/j.anifeedsci.2015.08.002 (2015).

    CAS 
    Article 

    Google Scholar 

  • Hatew, B. et al. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions. Grass Forage Sci. 70, 474–490. https://doi.org/10.1111/gfs.12125 (2015).

    CAS 
    Article 

    Google Scholar 

  • Huyen, N. T. et al. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci. 154, 1474–1487. https://doi.org/10.1017/S0021859616000393 (2016).

    CAS 
    Article 

    Google Scholar 

  • Salami, S. A. et al. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy061 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Salminen, J. P., Karonen, M. & Sinkkonen, J. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem.-Eur. J. 17, 2806–2816. https://doi.org/10.1002/chem.201002662 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bezabih, M., Pellikaan, W. F., Tolera, A., Khan, N. A. & Hendriks, W. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass Forage Sci. 69, 635–643. https://doi.org/10.1111/gfs.12091 (2013).

    CAS 
    Article 

    Google Scholar 

  • Navarrete, S., Kemp, P. D., Pain, S. J. & Back, P. J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Technol. 222, 158–167. https://doi.org/10.1016/j.anifeedsci.2016.10.008 (2016).

    CAS 
    Article 

    Google Scholar 

  • Basha, N. A., Scogings, P. F. & Nsahlai, I. V. Effects of season, browse species and polyethylene glycol addition on gas production kinetics of forages in the subhumid subtropical savannah, South Africa. J. Sci. Food Agric. 93, 1338–1348. https://doi.org/10.1002/jsfa.5895 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • O’Donovan, L. & Brooker, J. D. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147, 1025–1033. https://doi.org/10.1099/00221287-147-4-1025 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bhatta, R. et al. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92, 5512–5522. https://doi.org/10.3168/jds.2008-1441 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Naumann, H. D. et al. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus. Vet. Parasitol. 199, 93–98. https://doi.org/10.1016/j.vetpar.2013.09.025 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jayanegara, A., Goel, G., Makkar, H.P.S., & Becker, K. Reduction in
    methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. Food and Agriculture Organization of the United Nations (FAO) Rome, Italy, 151–157. ISBN 978-92-5-106697-3 (2010).

  • Hatew, B. et al. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr. 100, 348–360. https://doi.org/10.1111/jpn.12336 (2016).

    CAS 
    Article 

    Google Scholar 

  • Waghorn, G. C., Douglas, G. B., Niezen, J. H., McNabb, W. C. & Foote, A. G. Forages with condensed tannins-their management and nutritive value for ruminants. Proc. N. Z. Grassl. Assoc., 60, 89−98 (1998).

  • Woodward, S. L., Waghorn, G. C. & Lassey, K. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. N. Z. Soc. Anim. Prod. 61, 23–26 (2001).

    Google Scholar 

  • Molle, G. et al. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 123, 138–146. https://doi.org/10.1016/j.livsci.2008.11.018 (2009).

    Article 

    Google Scholar 

  • Orlandi, T., Kozloski, G. V., Alves, T. P., Mesquita, F. R. & Ávila, S. C. Digestibility, ruminal fermentation and duodenal flux of amino acids in steers fed grass forage plus concentrate containing increasing levels of Acacia mearnsii tannin extract. Anim. Feed Sci. Technol. 210, 37–45. https://doi.org/10.1016/j.anifeedsci.2015.09.012 (2015).

    CAS 
    Article 

    Google Scholar 

  • Patra, A. K. & Yu, Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01434 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niderkorn, V. et al. Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. Animal 13, 718–726. https://doi.org/10.1017/S1751731118002185 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lee, J., Hemmingson, N., Minneé, E. & Clark, C. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics, and plant density. Crop Pasture Sci. 66, 168. https://doi.org/10.1071/CP14181 (2015).

    CAS 
    Article 

    Google Scholar 

  • Cong, W.-F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1422. https://doi.org/10.1038/s41598-017-01632-4 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanderson, M. A., Labreveux, M., Hall, M. H. & Elwinger, G. F. Nutritive value of chicory and English plantain forage. Crop Sci. 43, 1797. https://doi.org/10.2135/cropsci2003.1797 (2003).

    CAS 
    Article 

    Google Scholar 

  • Van Soest, P. J., Robertson, J. B. & Lewis, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Engström, M. T. et al. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J. Agric. Food Chem. 62, 3390–3399. https://doi.org/10.1021/jf500745y (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Menke, K. & Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55 (1988).

    Google Scholar 

  • R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Venables, B. & Ripley, B. Generalised linear models. In Modern Applied Statistics With S.(4th edition) 183–208 (Springer, 2013).


  • Source: Ecology - nature.com

    Viscotoxin and lectin content in foliage and fruit of Viscum album L. on the main host trees of Hyrcanian forests

    Major biodiversity summit will go ahead in Canada not China: what scientists think