in

Lithology and disturbance drive cavefish and cave crayfish occurrence in the Ozark Highlands ecoregion

  • Sket, B. Can we agree on an ecological classification of subterranean animals?. J. Nat. Hist. 42, 1549–1563. https://doi.org/10.1080/00222930801995762 (2008).

    Article 

    Google Scholar 

  • Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650. https://doi.org/10.1093/biosci/biz064 (2019).

    Article 

    Google Scholar 

  • Boulton, A. J., Fenwick, G. D., Hancock, P. J. & Harvey, M. S. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst. 22, 103–116. https://doi.org/10.1071/IS07024 (2008).

    Article 

    Google Scholar 

  • Danielopol, D. L. & Griebler, C. Changing paradigms in groundwater ecology—From the ‘living fossils’ tradition to the ‘new groundwater ecology’. Int. Rev. Hydrobiol. 93, 565–577. https://doi.org/10.1002/iroh.200711045 (2008).

    Article 

    Google Scholar 

  • Griebler, C., Malard, F. & Lefébure, T. Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Curr. Opin. Biotechnol. 27, 159–167. https://doi.org/10.1016/j.copbio.2014.01.018 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Fišer, C. Niphargus—A model system for evolution and ecology. In Encyclopedia of Caves (eds Culver, D. C. et al.) 746–755 (Academic Press, 2019).

    Chapter 

    Google Scholar 

  • Riddle, M. R. et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555, 647–651. https://doi.org/10.1038/nature26136 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibert, J. et al. Assessing and conserving groundwater biodiversity: Synthesis and perspectives. Freshw. Biol. 54, 930–941. https://doi.org/10.1111/j.1365-2427.2009.02201.x (2009).

    Article 

    Google Scholar 

  • Trontelj, P. et al. A molecular test for cryptic diversity in ground water: How large are the ranges of macro stygobionts?. Freshw. Biol. 54, 727–744. https://doi.org/10.1111/j.1365-2427.2007.01877.x (2009).

    Article 

    Google Scholar 

  • Cooper, J. E. Ecological and Behavioral Studies in Shelta Cave, Alabama, with Emphasis on Decapod Crustaceans (University of Kentucky, 1975).

    Google Scholar 

  • Voituron, Y., de Fraipont, M., Issartel, J., Guillaume, O. & Clobert, J. Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 7, 105–107. https://doi.org/10.1098/rsbl.2010.0539 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Poulson, T. L. Cave adaptation in amblyopsid fishes. Am. Midl. Nat. 70, 257–290. https://doi.org/10.2307/2423056 (1963).

    Article 

    Google Scholar 

  • Venarsky, M. P., Huryn, A. D. & Benstead, J. P. Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark–recapture data: A lesson on the limitations of iterative size-at-age models. Freshw. Biol. 57, 1471–1481. https://doi.org/10.1111/j.1365-2427.2012.02812.x (2012).

    Article 

    Google Scholar 

  • Culver, D. C., Kane, T. C. & Fong, D. W. Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus (Harvard University Press, 1995).

    Book 

    Google Scholar 

  • Niemiller, M. L. & Poulson, T. L. Subterranean fishes of North America: Amblyopsidae. In Biology of Subterranean Fishes (eds Trajano, E. et al.) 169–280 (CRC Press, 2010).

    Chapter 

    Google Scholar 

  • Fišer, C., Zagmajster, M. & Zakšek, V. Coevolution of life history traits and morphology in female subterranean amphipods. Oikos 122, 770–778. https://doi.org/10.1111/j.1600-0706.2012.20644.x (2013).

    Article 

    Google Scholar 

  • Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. Biol. Sci. 267, 1947–1952. https://doi.org/10.1098/rspb.2000.1234 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221. https://doi.org/10.1038/nclimate2113 (2014).

    Article 
    ADS 

    Google Scholar 

  • Niemiller, M. L., Bichuette, E. & Taylor, S. J. Conservation of cave fauna in Europe and the Americas. In Ecological Studies: Cave Ecology (eds Moldovan, O. T. et al.) 451–478 (Springer, 2018).

    Chapter 

    Google Scholar 

  • Niemiller, M. L. & Taylor, S. J. Protecting cave life. In Encyclopedia of Caves (eds Culver, D. C. et al.) 822–829 (Academic Press, 2019).

    Chapter 

    Google Scholar 

  • Niemiller, M. L., Taylor, S. J., Slay, M. E. & Hobbs, H. H. III. Biodiversity in the United States and Canada. In Encyclopedia of Caves (eds Culver, D. C. et al.) 163–176 (Academic Press, 2019).

    Chapter 

    Google Scholar 

  • Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–529. https://doi.org/10.1146/annurev-ecolsys-112414-054400 (2015).

    Article 

    Google Scholar 

  • MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Academic Press, 2018).

    MATH 

    Google Scholar 

  • Roberto, P. & Pietro, B. Species rediscovery or lucky endemic? Looking for the supposed missing species Leistus punctatissimus through a biogeographer’s eye (Coleoptera, Carabidae). ZooKeys 740, 97–108. https://doi.org/10.3897/zookeys.740.23495 (2018).

    Article 

    Google Scholar 

  • Chu, C., Mandrak, N. E. & Minns, C. K. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib. 11, 299–310. https://doi.org/10.1111/j.1366-9516.2005.00153.x (2005).

    Article 

    Google Scholar 

  • Larson, E. R. & Olden, J. D. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conserv. Biol. 24, 1099–1110. https://doi.org/10.1111/j.1523-1739.2010.01462.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Filipe, A. F. et al. Selection of priority areas for fish conservation in Guadiana River Basin, Iberian Peninsula. Conserv. Biol. 18, 189–200. https://doi.org/10.1111/j.1523-1739.2004.00620.x (2004).

    Article 

    Google Scholar 

  • Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872. https://doi.org/10.1111/brv.12642 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Domínguez-Domínguez, O., Martínez-Meyer, E., Zombrano, L. & de León, G. P. Using ecological-niche modeling as a conservation tool for freshwater species: Live-bearing fishes in central Mexico. Conserv. Biol. 20, 1730–1739. https://doi.org/10.1111/j.1523-1739.2006.00588.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. Ecography 41, 1194–1208. https://doi.org/10.1111/ecog.03464 (2018).

    Article 

    Google Scholar 

  • Castellarini, F., Malard, F., Dole-Olivier, M. & Gibert, J. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Divers. Distrib. 13, 213–224. https://doi.org/10.1111/j.1472-4642.2006.00317.x (2007).

    Article 

    Google Scholar 

  • Foulquier, A., Malard, F., Lefébure, T., Douady, C. J. & Gibert, J. The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). J. Biogeogr. 35, 552–564. https://doi.org/10.1111/j.1365-2699.2007.01795.x (2008).

    Article 

    Google Scholar 

  • Johns, T. et al. Regional-scale drivers of groundwater faunal distributions. Freshw. Sci. 34, 316–328. https://doi.org/10.1086/678460 (2015).

    Article 

    Google Scholar 

  • Camp, C. D., Wooten, J. A., Jensen, J. B. & Bartek, D. F. Role of temperature in determining relative abundance in cave twilight zones by two species of lungless salamander (family Plethodontidae). Can. J. Zool. 92, 119–127. https://doi.org/10.1139/cjz-2013-0178 (2014).

    Article 

    Google Scholar 

  • Korbel, K. L., Hancock, P. J., Serov, P., Lim, R. P. & Hose, G. C. Groundwater ecosystems vary with land use across a mixed agricultural landscape. J. Environ. Qual. 42, 380–390. https://doi.org/10.2134/jeq2012.0018 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Español, C. et al. Does land use impact on groundwater invertebrate diversity and functionality in floodplains?. Ecol. Eng. 103, 394–403. https://doi.org/10.1016/j.ecoleng.2016.11.061 (2017).

    Article 

    Google Scholar 

  • Christman, M. C. et al. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment. PLoS One 11, e0160408. https://doi.org/10.1371/journal.pone.0160408 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145. https://doi.org/10.1111/geb.12200 (2014).

    Article 

    Google Scholar 

  • Poff, N. L. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 16, 391–409. https://doi.org/10.2307/1468026 (1997).

    Article 

    Google Scholar 

  • Stevenson, R. J. Scale-dependent determinants and consequences of benthic algal heterogeneity. J. North Am. Benthol. Soc. 16, 248–262. https://doi.org/10.2307/1468255 (1997).

    Article 
    ADS 

    Google Scholar 

  • U.S. Geological Survey. NLCD 2011 land cover. Multi-Resolution Land Characteristics. https://www.mrlc.gov/data/nlcd-2011-land-cover-conus (2011).

  • Adamski, J. C. Geochemistry of the Springfield Plateau Aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA. Hydrol. Process. 14, 849–866. https://doi.org/10.1002/(SICI)1099-1085(20000415)14:5%3c849::AID-HYP973%3e3.0.CO;2-7 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1099-1085(20000415)14:53.0.CO;2-7″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291099-1085%2820000415%2914%3A5%3C849%3A%3AAID-HYP973%3E3.0.CO%3B2-7″ aria-label=”Article reference 42″ data-doi=”10.1002/(SICI)1099-1085(20000415)14:53.0.CO;2-7″>Article 
    ADS 

    Google Scholar 

  • Woods, A. J. et al. Ecoregions of Oklahoma (Color Poster with Map, Descriptive Text, Summary Tables, and Photographs) (U.S. Geological Survey, 2005).

    Google Scholar 

  • Unklesbay, A. G. & Vineyard, J. D. Missouri Geology: Three Billion Years of Volcanoes, Seas, Sediments, and Erosion (University of Missouri Press, 1992).

    Google Scholar 

  • Eigenmann, C. H. A new blind fish. In Proceedings of the Indiana Academy of Science 1897 (ed Waldo, C. A.) 231 (1898).

  • Graening, G. O., Fenolio, D. B., Niemiller, M. L., Brown, A. V. & Beard, J. B. The 30-year recovery effort for the Ozark cavefish (Amblyopsis rosae): Analysis of current distribution, population trends, and conservation status of this threatened species. Environ. Biol. Fish. 87, 55–88. https://doi.org/10.1007/s10641-009-9568-2 (2010).

    Article 

    Google Scholar 

  • Niemiller, M. L., Near, T. J. & Fitzpatrick, B. M. Delimiting species using multilocus data: Diagnosing cryptic diversity in the southern cavefish, Typhlichthys subterraneus (Teleostei: Amblyopsidae). Evolution 66, 846–866. https://doi.org/10.1111/j.1558-5646.2011.01480.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hobbs, H. H. Jr. & Brown, A. V. A new troglobitic crayfish from northwestern Arkansas (Decapoda: Cambaridae). Proc. Biol. Soc. Wash. 100, 1040–1048 (1987).

    Google Scholar 

  • Graening, G. O., Slay, M. E., Brown, A. V. & Koppelman, J. B. Status and distribution of the endangered Benton cave crayfish, Cambarus aculabrum (Decapoda: Cambaridae). Southwest. Nat. 51, 376–381. https://doi.org/10.1894/0038-4909(2006)51[376:SADOTE]2.0.CO;2 (2006).

    Article 

    Google Scholar 

  • Faxon, W. Cave animals from southwestern Missouri. Bull. Mus. Comp. Zool. 17, 225–240 (1889).

    Google Scholar 

  • Graening, G. O., Hobbs, H. H. III., Slay, M. E., Elliott, W. R. & Brown, A. V. Status update for bristly cave crayfish, Cambarus setosus (Decapoda: Cambaridae), and range extension into Arkansas. Southwest. Nat. 51, 382–392. https://doi.org/10.1894/0038-4909(2006)51[382:SUFBCC]2.0.CO;2 (2006).

    Article 

    Google Scholar 

  • Hobbs, H. H. III. Cambarus (Jugicambarus) subterraneus, a new cave crayfish (Decapoda: Cambaridae) from northeastern Oklahoma, with a key to the troglobitic members of the subgenus Jugicambarus. Proc. Biol. Soc. Wash. 106, 719–727 (1993).

    Google Scholar 

  • Graening, G. O. & Fenolio, D. B. Status update of the Delaware County cave crayfish, Cambarus subterraneus (Decapoda: Cambaridae). Proc. Okla. Acad. Sci. 85, 85–89 (2005).

    Google Scholar 

  • Hobbs, H. H. Jr. & Cooper, M. R. A new troglobitic crayfish from Oklahoma (Decapoda: Astacidae). Proc. Biol. Soc. Wash. 85, 49–56 (1972).

    Google Scholar 

  • Graening, G. O. et al. Range extension and status update for the Oklahoma cave crayfish, Cambarus tartarus (Decapoda: Cambaridae). Southwest. Nat. 51, 94–99 (2006).

    Article 

    Google Scholar 

  • Hobbs, H. H. III. A new cave crayfish of the genus Orconectes, subgenus Orconectes, from southcentral Missouri, USA, with a key to the stygobitic species of the genus (Decapoda, Cambaridae). Crustaceana 74, 635–646. https://doi.org/10.1163/156854001750377911 (2001).

    Article 

    Google Scholar 

  • Miller, B. V. The Hydrology of the Carroll Cave-Toronto Springs System: Identifying and Examining Source Mixing Through Dye Tracing, Geochemical Monitoring, Seepage Runs, and Statistical Methods (Western Kentucky University, 2010).

    Google Scholar 

  • Mouser, J. B., Brewer, S. K., Niemiller, M. L., Mollenhauer, R. & Van Den Bussche, R. Comparing visual and environmental DNA surveys for detection of stygobionts. Subterr. Biol. 39, 79–105. https://doi.org/10.3897/subtbiol.39.64279 (2021).

    Article 

    Google Scholar 

  • Longmire, J. L., Maltbie, M. & Baker, R. J. Use of “Lysis Buffer” in DNA Isolation and Its Implication for Museum Collections (Museum of Texas Tech University, 1997).

    Book 

    Google Scholar 

  • Mouser, J. B., Mollenhauer, R. & Brewer, S. K. Relationships between landscape constraints and a crayfish assemblage with consideration of competitor presence. Divers. Distrib. 25, 61–73. https://doi.org/10.1111/ddi.12840 (2019).

    Article 

    Google Scholar 

  • U.S. Geological Survey. 1 Arc-second digital elevation models (DEMs)—USGS national map 3DEP downloadable data collection. https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b (U.S. Geological Survey, 2017).

  • Oak Ridge National Laboratory Distributed Active Archive Center. MODIS and VIIRS land products global subsetting and visualization tool. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1379 (2018).

  • Horton, J. D., San Juan, C. A. & Stoeser, D. B. The state geologic map compilation (SGMC) geodatabase of the conterminous United States. U.S. Geol. Surv. https://doi.org/10.3133/ds1052 (2017).

    Article 

    Google Scholar 

  • MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • Tyre, A. J. et al. Improving precision and reducing bias in biological surveys: Estimating false negative error rates. Ecol. Appl. 13, 1790–1801. https://doi.org/10.1890/02-5078 (2003).

    Article 

    Google Scholar 

  • Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel Hierarchical Models (Cambridge University Press, 2007).

    Google Scholar 

  • Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS (Academic Press, 2016).

    MATH 

    Google Scholar 

  • Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (eds Hornik, K. et al.) 1–10 (Austrian Science Foundation, 2003).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

  • Kellner, J. jagsUI: A wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. https://CRAN.R-project.org/package=jagsUI (R-project, 2019).

  • Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.1080/10618600.1998.10474787 (1998).

    Article 
    MathSciNet 

    Google Scholar 

  • Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2015).

    MATH 

    Google Scholar 

  • Hobbs, N. T. & Hooten, M. B. Bayesian Models (Princeton University Press, 2015). https://doi.org/10.1515/9781400866557.

    Book 

    Google Scholar 

  • Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R. & Hooten, M. B. A guide to Bayesian model checking for ecologists. Ecol. Monogr. 88, 526–542. https://doi.org/10.1002/ecm.1314 (2018).

    Article 

    Google Scholar 

  • Allan, J. D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).

    Article 

    Google Scholar 

  • Paul, M. J. & Meyer, J. L. Streams in the urban landscape. Annu. Rev. Ecol. Evol. Syst. 32, 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040 (2001).

    Article 

    Google Scholar 

  • Wicks, C., Kelley, C. & Peterson, E. Estrogen in a karstic aquifer. Groundwater 42, 384–389. https://doi.org/10.1111/j.1745-6584.2004.tb02686.x (2004).

    Article 

    Google Scholar 

  • Buřič, M., Kouba, A., Máchová, J., Mahovská, I. & Kozák, P. Toxicity of the organophosphate pesticide diazinon to crayfish of differing age. Int. J. Environ. Sci. Technol. 10, 607–610. https://doi.org/10.1007/s13762-013-0185-4 (2013).

    Article 

    Google Scholar 

  • Sohn, L., Brodie, R. J., Couldwell, G., Demmons, E. & Sturve, J. Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. Ecotoxicology 27, 900–907. https://doi.org/10.1007/s10646-018-1950-4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noltie, D. B. & Wicks, C. M. How hydrogeology has shaped the ecology of Missouri’s Ozark cavefish, Amblyopsis rosae, and southern cavefish, Typhlichthys subterraneus: Insights on the sightless from understanding the underground. Environ. Biol. Fish. 62, 171–194. https://doi.org/10.1023/A:1011815806589 (2001).

    Article 

    Google Scholar 

  • Kuhajda, B. R. & Mayden, R. L. Status of the federally endangered Alabama cavefish, Speoplatyrhinus poulsoni (Amblyopsidae), in Key Cave and surrounding caves, Alabama. Environ. Biol. Fish. 62, 215–222. https://doi.org/10.1023/A:1011817023749 (2001).

    Article 

    Google Scholar 

  • Hutchins, B. T. The conservation status of Texas groundwater invertebrates. Biodivers. Conserv. 27, 475–501. https://doi.org/10.1007/s10531-017-1447-0 (2018).

    Article 

    Google Scholar 

  • Niemiller, M. L. et al. Discovery of a new population of the federally endangered Alabama cave shrimp, Palaemonias alabamae Smalley, 1961, in northern Alabama. Subterr. Biol. 32, 43–59. https://doi.org/10.3897/subtbiol.32.38280 (2019).

    Article 

    Google Scholar 

  • Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63. https://doi.org/10.1016/j.biocon.2006.08.017 (2007).

    Article 

    Google Scholar 

  • Liu, Y. et al. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Sci. Total Environ. 601–602, 580–593. https://doi.org/10.1016/j.scitotenv.2017.05.212 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    With new heat treatment, 3D-printed metals can withstand extreme conditions

    3 Questions: Robert Stoner unpacks US climate and infrastructure laws