in

Local adaptation and colonization are potential factors affecting sexual competitiveness and mating choice in Anopheles coluzzii populations

  • 1.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Google Scholar 

  • 2.

    Fisher, T. W. et al. Handbook of Biological Control: Principles and Applications of Biological Control (Academic Press, London, 1999).

    Google Scholar 

  • 3.

    Dyck, V. A., Hendrichs, J. & Robinson, A. S. Sterile insect technique: Principles and practice in area-wide integrated pest management. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. https://doi.org/10.1007/1-4020-4051-2. (2005)

  • 4.

    Etges, W. J. & Noor, M. A. F. Genetics of Mate Choice: From Sexual Selection to Sexual Isolation. (Kluwer Academic Publishers, 2002).

  • 5.

    Harbach, R. E. Review of the internal classification of the genus Anopheles (Diptera: Culicidae): The foundation for comparative systematics and phylogenetic research. Bull. Entomol. Res. 84, 331–342 (1994).

    Google Scholar 

  • 6.

    Rogers, D. J., Randolph, S. E., Snow, R. W. & Hay, S. I. Satellite imagery in the study and forecast of malaria. Nature 415, 710–715 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Bayoh, M. N. N., Thomas, C. J. J. & Lindsay, S. W. W. Mapping distributions of chromosomal forms of Anopheles gambiae in West Africa using climate data. Med. Vet. Entomol. 15, 267–274 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Namountougou, M. et al. Multiple insecticide resistance in Anopheles gambiae s. l. Populations from Burkina Faso. West Africa. PLoS One 7, e48412 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 9.

    Benedict, M. Q. & Robinson, A. S. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol. 19, 349–355 (2003).

    PubMed 

    Google Scholar 

  • 10.

    Maïga, H. et al. Mating competitiveness of sterile male Anopheles coluzzii in large cages. Malar. J. 13, 460 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Clements, A. N. The Biology of Mosquitoes. Sensory Reception and Behaviour Behaviour, Vol. 2. (Wallingford, 1999).

  • 12.

    Doug, P. et al. Genetic and environmental factors associated with laboratory rearing affect survival and assortative mating but not overall mating success in Anopheles gambiae Sensu Stricto. PLoS One 8, e82631 (2013).

    Google Scholar 

  • 13.

    Baeshen, R. et al. Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malar. J. 13, 19 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Bargielowski, I., Kaufmann, C., Alphey, L., Reiter, P. & Koella, J. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Vector-Borne Zoonotic Dis. 12, 1053–1058 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Harris, A. F. et al. Field performance of engineered male mosquitoes. Nat. Biotechnol. 29, 1034–1037 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Alphey, L. et al. Genetic control of Aedes mosquitoes. Pathogens and Global Health 107, 170–179 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Lehmann, T. et al. Tracing the origin of the early wet-season Anopheles coluzzii in the Sahel. Evol. Appl. 10, 704–717 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Wondji, C., Simard, F. & Fontenille, D. Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry. Insect Mol. Biol. 11, 11–19 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Simard, F., Nchoutpouen, E., Toto, J. C. & Fontenille, D. Geographic distribution and breeding site preference of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) in Cameroon, Central Africa. J. Med. Entomol. 42, 726–731 (2005).

    PubMed 

    Google Scholar 

  • 21.

    Roux, O., Diabaté, A. & Simard, F. Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. J. Anim. Ecol. 83, 702–711 (2014).

    PubMed 

    Google Scholar 

  • 22.

    Costantini, C. et al. Living at the edge: Biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9 (2009).

  • 23.

    The Anopheles gambiae 1000 Genomes Consortium. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552, 96–100 (2017).

    PubMed Central 

    Google Scholar 

  • 24.

    Oliva, C. F., Benedict, M. Q., Lempérière, G. & Gilles, J. Laboratory selection for an accelerated mosquito sexual development rate. Malar. J. 10, 135 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Munhenga, G. et al. Evaluating the potential of the sterile insect technique for malaria control: Relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasit. Vectors 4, 208 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Lee, H. L. et al. Mating compatibility and competitiveness of transgenic and wild type Aedes aegypti (L.) under contained semi-field conditions. Transgenic Res. 22, 47–57 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Damiens, D. et al. Cross-Mating compatibility and competitiveness among Aedes albopictus strains from distinct geographic origins-implications for future application of sit programs in the south west Indian ocean islands. PLoS One 11, e0163788 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).

    CAS 
    ADS 

    Google Scholar 

  • 29.

    Aguilar, R. et al. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. Insect Mol. Biol. 19, 695–705 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: Review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 130, 24–34 (2014).

    Google Scholar 

  • 31.

    Poda, S. B. et al. Sex aggregation and species segregation cues in swarming mosquitoes: Role of ground visual markers. Parasit. Vectors 12, 589 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Ekechukwu, N. E. et al. Heterosis increases fertility, fecundity, and survival of laboratory-produced F1 hybrid males of the malaria mosquito Anopheles coluzzii. G3 Genes Genomes Genet. 5, 2693–2709 (2015).

    CAS 

    Google Scholar 

  • 33.

    Ng’habi, K. R. et al. Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations. Malar. J. 14, 10 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Huho, B. J. et al. Nature beats nurture: A case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l. J. Exp. Biol. 210, 2939–2947 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Ferguson, H. M., John, B., Ng, K. & Knols, B. G. J. Redressing the sex imbalance in knowledge of vector biology. Trends Ecol. Evol. 20, 202–209 (2005).

    PubMed 

    Google Scholar 

  • 36.

    Hassan, M., El-Motasim, W. M., Ahmed, R. T. & El-Sayed, B. B. Prolonged colonisation, irradiation, and transportation do not impede mating vigour and competitiveness of male Anopheles arabiensis mosquitoes under semi-field conditions in Northern Sudan. Malar. World J. 1 (2010).

  • 37.

    Yamada, H., Vreysen, M. J. B., Gilles, J. R. L., Munhenga, G. & Damiens, D. D. The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages. Malar. J. 13, 1–10 (2014).

    Google Scholar 

  • 38.

    Munhenga, G. et al. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions : Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasit. Vectors 9, 1–12 (2016).

    Google Scholar 

  • 39.

    Assogba, B. S. et al. Characterization of swarming and mating behaviour between Anopheles coluzzii and Anopheles melas in a sympatry area of Benin. Acta Trop. 132S, 1–11 (2013).

    Google Scholar 

  • 40.

    Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Diabate, A. et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 97, 713–716 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Manoukis, N. C. et al. Structure and dynamics of male swarms of Anopheles gambiae. J. Med. Entomol. 46, 227–235 (2009).

    PubMed 

    Google Scholar 

  • 43.

    Aldersley, A. et al. Too ‘sexy’ for the field? Paired measures of laboratory and semi-field performance highlight variability in the apparent mating fitness of Aedes aegypti transgenic strains. Parasit. Vectors 12, 357 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Pantoja-Sánchez, H., Gomez, S., Velez, V., Avila, F. W. & Alfonso-Parra, C. Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasit. Vectors 12, 386 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Gibson, G., Warren, B. & Russell, I. J. Humming in tune: Sex and species recognition by mosquitoes on the wing. JARO 540, 527–540 (2010).

    Google Scholar 

  • 46.

    Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Caputo, B. et al. Comparative analysis of epicuticular lipid profiles of sympatric and allopatric field populations of Anopheles gambiae s.s. molecular forms and An. arabiensis from Burkina Faso (West Africa). Insect Biochem. Mol. Biol. 37, 389–398 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Ferguson, H. M. & Read, A. F. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proc. R. Soc. B Biol. Sci. 269, 1217–1224 (2002).

    CAS 

    Google Scholar 

  • 49.

    Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Vantaux, A. et al. Larval nutritional stress affects vector life history traits and human malaria transmission. Sci. Rep. 6, 36778 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 52.

    Crawley, M. J. The R Book. (Ltd, Sons, 2012). https://doi.org/10.1002/9780470515075.

  • 53.

    Hothorn, T., Bretz, F., Westfall, P. & Heiberger, R. M. Package ‘multcomp’ title simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Overcoming a bottleneck in carbon dioxide conversion

    Pricing carbon, valuing people