Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
Fisher, T. W. et al. Handbook of Biological Control: Principles and Applications of Biological Control (Academic Press, London, 1999).
Dyck, V. A., Hendrichs, J. & Robinson, A. S. Sterile insect technique: Principles and practice in area-wide integrated pest management. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. https://doi.org/10.1007/1-4020-4051-2. (2005)
Etges, W. J. & Noor, M. A. F. Genetics of Mate Choice: From Sexual Selection to Sexual Isolation. (Kluwer Academic Publishers, 2002).
Harbach, R. E. Review of the internal classification of the genus Anopheles (Diptera: Culicidae): The foundation for comparative systematics and phylogenetic research. Bull. Entomol. Res. 84, 331–342 (1994).
Rogers, D. J., Randolph, S. E., Snow, R. W. & Hay, S. I. Satellite imagery in the study and forecast of malaria. Nature 415, 710–715 (2002).
Google Scholar
Bayoh, M. N. N., Thomas, C. J. J. & Lindsay, S. W. W. Mapping distributions of chromosomal forms of Anopheles gambiae in West Africa using climate data. Med. Vet. Entomol. 15, 267–274 (2001).
Google Scholar
Namountougou, M. et al. Multiple insecticide resistance in Anopheles gambiae s. l. Populations from Burkina Faso. West Africa. PLoS One 7, e48412 (2012).
Google Scholar
Benedict, M. Q. & Robinson, A. S. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol. 19, 349–355 (2003).
Google Scholar
Maïga, H. et al. Mating competitiveness of sterile male Anopheles coluzzii in large cages. Malar. J. 13, 460 (2014).
Google Scholar
Clements, A. N. The Biology of Mosquitoes. Sensory Reception and Behaviour Behaviour, Vol. 2. (Wallingford, 1999).
Doug, P. et al. Genetic and environmental factors associated with laboratory rearing affect survival and assortative mating but not overall mating success in Anopheles gambiae Sensu Stricto. PLoS One 8, e82631 (2013).
Baeshen, R. et al. Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malar. J. 13, 19 (2014).
Google Scholar
Bargielowski, I., Kaufmann, C., Alphey, L., Reiter, P. & Koella, J. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Vector-Borne Zoonotic Dis. 12, 1053–1058 (2012).
Google Scholar
Harris, A. F. et al. Field performance of engineered male mosquitoes. Nat. Biotechnol. 29, 1034–1037 (2011).
Google Scholar
Alphey, L. et al. Genetic control of Aedes mosquitoes. Pathogens and Global Health 107, 170–179 (2013).
Google Scholar
Lehmann, T. et al. Tracing the origin of the early wet-season Anopheles coluzzii in the Sahel. Evol. Appl. 10, 704–717 (2017).
Google Scholar
Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).
Google Scholar
Wondji, C., Simard, F. & Fontenille, D. Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry. Insect Mol. Biol. 11, 11–19 (2002).
Google Scholar
Simard, F., Nchoutpouen, E., Toto, J. C. & Fontenille, D. Geographic distribution and breeding site preference of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) in Cameroon, Central Africa. J. Med. Entomol. 42, 726–731 (2005).
Google Scholar
Roux, O., Diabaté, A. & Simard, F. Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. J. Anim. Ecol. 83, 702–711 (2014).
Google Scholar
Costantini, C. et al. Living at the edge: Biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9 (2009).
The Anopheles gambiae 1000 Genomes Consortium. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552, 96–100 (2017).
Google Scholar
Oliva, C. F., Benedict, M. Q., Lempérière, G. & Gilles, J. Laboratory selection for an accelerated mosquito sexual development rate. Malar. J. 10, 135 (2011).
Google Scholar
Munhenga, G. et al. Evaluating the potential of the sterile insect technique for malaria control: Relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasit. Vectors 4, 208 (2011).
Google Scholar
Lee, H. L. et al. Mating compatibility and competitiveness of transgenic and wild type Aedes aegypti (L.) under contained semi-field conditions. Transgenic Res. 22, 47–57 (2013).
Google Scholar
Damiens, D. et al. Cross-Mating compatibility and competitiveness among Aedes albopictus strains from distinct geographic origins-implications for future application of sit programs in the south west Indian ocean islands. PLoS One 11, e0163788 (2016).
Google Scholar
Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).
Google Scholar
Aguilar, R. et al. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. Insect Mol. Biol. 19, 695–705 (2010).
Google Scholar
Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: Review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 130, 24–34 (2014).
Poda, S. B. et al. Sex aggregation and species segregation cues in swarming mosquitoes: Role of ground visual markers. Parasit. Vectors 12, 589 (2019).
Google Scholar
Ekechukwu, N. E. et al. Heterosis increases fertility, fecundity, and survival of laboratory-produced F1 hybrid males of the malaria mosquito Anopheles coluzzii. G3 Genes Genomes Genet. 5, 2693–2709 (2015).
Google Scholar
Ng’habi, K. R. et al. Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations. Malar. J. 14, 10 (2015).
Google Scholar
Huho, B. J. et al. Nature beats nurture: A case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l. J. Exp. Biol. 210, 2939–2947 (2007).
Google Scholar
Ferguson, H. M., John, B., Ng, K. & Knols, B. G. J. Redressing the sex imbalance in knowledge of vector biology. Trends Ecol. Evol. 20, 202–209 (2005).
Google Scholar
Hassan, M., El-Motasim, W. M., Ahmed, R. T. & El-Sayed, B. B. Prolonged colonisation, irradiation, and transportation do not impede mating vigour and competitiveness of male Anopheles arabiensis mosquitoes under semi-field conditions in Northern Sudan. Malar. World J. 1 (2010).
Yamada, H., Vreysen, M. J. B., Gilles, J. R. L., Munhenga, G. & Damiens, D. D. The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages. Malar. J. 13, 1–10 (2014).
Munhenga, G. et al. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions : Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasit. Vectors 9, 1–12 (2016).
Assogba, B. S. et al. Characterization of swarming and mating behaviour between Anopheles coluzzii and Anopheles melas in a sympatry area of Benin. Acta Trop. 132S, 1–11 (2013).
Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).
Google Scholar
Diabate, A. et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 97, 713–716 (2003).
Google Scholar
Manoukis, N. C. et al. Structure and dynamics of male swarms of Anopheles gambiae. J. Med. Entomol. 46, 227–235 (2009).
Google Scholar
Aldersley, A. et al. Too ‘sexy’ for the field? Paired measures of laboratory and semi-field performance highlight variability in the apparent mating fitness of Aedes aegypti transgenic strains. Parasit. Vectors 12, 357 (2019).
Google Scholar
Pantoja-Sánchez, H., Gomez, S., Velez, V., Avila, F. W. & Alfonso-Parra, C. Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasit. Vectors 12, 386 (2019).
Google Scholar
Gibson, G., Warren, B. & Russell, I. J. Humming in tune: Sex and species recognition by mosquitoes on the wing. JARO 540, 527–540 (2010).
Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).
Google Scholar
Caputo, B. et al. Comparative analysis of epicuticular lipid profiles of sympatric and allopatric field populations of Anopheles gambiae s.s. molecular forms and An. arabiensis from Burkina Faso (West Africa). Insect Biochem. Mol. Biol. 37, 389–398 (2007).
Google Scholar
Ferguson, H. M. & Read, A. F. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proc. R. Soc. B Biol. Sci. 269, 1217–1224 (2002).
Google Scholar
Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).
Google Scholar
Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).
Google Scholar
Vantaux, A. et al. Larval nutritional stress affects vector life history traits and human malaria transmission. Sci. Rep. 6, 36778 (2016).
Google Scholar
Crawley, M. J. The R Book. (Ltd, Sons, 2012). https://doi.org/10.1002/9780470515075.
Hothorn, T., Bretz, F., Westfall, P. & Heiberger, R. M. Package ‘multcomp’ title simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2016).
Source: Ecology - nature.com