in

Local adaptation to climate anomalies relates to species phylogeny

  • Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).

    CAS 

    Google Scholar 

  • Pandori, L. L. M. & Sorte, C. J. B. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128, 621–629 (2019).

    Google Scholar 

  • Palmer, G. et al. Climate change, climatic variation and extreme biological responses. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160144 (2017).

  • Altwegg, R., Visser, V., Bailey, L. D. & Erni, B. Learning from single extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160141 (2017).

    Google Scholar 

  • McDermott Long, O. et al. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? J. Anim. Ecol. 86, 108–116 (2017).

    PubMed 

    Google Scholar 

  • Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate‐change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

    Google Scholar 

  • Suggitt, A. J. et al. Habitat associations of species show consistent but weak responses to climate. Biol. Lett. 8, 590–593 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    PubMed 

    Google Scholar 

  • Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).

    PubMed 

    Google Scholar 

  • Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Chang. Biol. 21, 3313–3322 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Titeux, N. et al. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Divers. Distrib. 23, 1393–1407 (2017).

    Google Scholar 

  • Haeler, E., Fiedler, K. & Grill, A. What prolongs a butterfly’s life?: trade-offs between dormancy, fecundity and body size. PLoS One 9, e111955 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez-Suarez, M., Gomez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 1–16 (2013).

    Google Scholar 

  • Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205–208 (2017).

    Google Scholar 

  • Kingsolver, J. G. & Watt, W. B. Thermoregulatory strategies in Colias butterflies: thermal stress and the limits to adaptation in temporally varying environments (Colorado). Am. Nat. 121, 32–55 (1983).

    Google Scholar 

  • MacLean, H. J., Higgins, J. K., Buckley, L. B. & Kingsolver, J. G. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies. Conserv. Physiol. 4, 1 (2016).

  • Kingsolver, J. G. & Wiernasz, D. C. Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies. Am. Nat. 137, 816–830 (1991).

    Google Scholar 

  • Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 1–7 (2019).

    CAS 

    Google Scholar 

  • Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 339–357 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2008).

    Google Scholar 

  • Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Chang. Biol. 15, 732–743 (2009).

    Google Scholar 

  • Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012).

    Google Scholar 

  • Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).

    Google Scholar 

  • Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).

    Google Scholar 

  • Schmucki, R. et al. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 53, 501–510 (2016).

    Google Scholar 

  • Pollard, E., Lakhani, K. H. & Rothery, P. The detection of density-dependence from a series of annual censuses. Ecology 68, 2046–2055 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Dooley, C. A., Bonsall, M. B., Brereton, T. & Oliver, T. Spatial variation in the magnitude and functional form of density-dependent processes on the large skipper butterfly Ochlodes sylvanus. Ecol. Entomol. 38, 608–616 (2013).

    Google Scholar 

  • Rothery, P., Newton, I., Dale, L. & Wesolowski, T. Testing for density dependence allowing for weather effects. Oecologia 112, 518–523 (1997).

    PubMed 

    Google Scholar 

  • Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5, 941–946 (2015).

    Google Scholar 

  • Stefanescu, C., Carnicer, J. & Peñuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34, 353–363 (2011).

    Google Scholar 

  • Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. M. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).

    Google Scholar 

  • Tolman, T. & Lewington, R. Butterflies of Europe (Harper Collins, 2008).

  • Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 19, 1623–1636 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112 (2008).

    Google Scholar 

  • Dincă, V. et al. High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun. Biol. 4, 1–11 (2021).

    Google Scholar 

  • Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 1–10 (2019).

    CAS 

    Google Scholar 

  • Dapporto, L. & Dennis, R. L. H. The generalist–specialist continuum: testing predictions for distribution and trends in British butterflies. Biol. Conserv. 157, 229–236 (2013).

    Google Scholar 

  • MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Chang. Biol. 23, 4094–4105 (2017).

    PubMed 

    Google Scholar 

  • Morlon, H. et al. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14, 141–149 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Google Scholar 

  • Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanden Broeck, A. et al. Gene flow and effective population sizes of the butterfly Maculinea alcon in a highly fragmented, anthropogenic landscape. Biol. Conserv. 209, 89–97 (2017).

    Google Scholar 

  • Haldane, J. B. S. Theoretical genetics of autopolyploids. J. Genet. 22, 359–372 (1930).

    Google Scholar 

  • Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).

    PubMed 

    Google Scholar 

  • Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35, 792–806 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reusch, T. B. H. & Wood, T. E. Molecular ecology of global change. Mol. Ecol. 16, 3973–3992 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • DeLong, J. P. & Gibert, J. P. Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics. Ecol. Evol. 6, 935–945 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Atkins, K. E. & Travis, J. M. J. Local adaptation and the evolution of species’ ranges under climate change. J. Theor. Biol. 266, 449–457 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    PubMed 

    Google Scholar 

  • Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).

    Google Scholar 

  • Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. & Maes, D. The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124, 54–61 (2015).

    Google Scholar 

  • Hu, G. et al. Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc. Natl Acad. Sci. USA 118, 2102762118 (2021).

    Google Scholar 

  • Merlin, C. & Liedvogel, M. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J. Exp. Biol. 222, jeb191890 (2019).

  • Wiemers, M. et al. An updated checklist of the European butterflies (Lepidoptera, Papilionoideae). Zookeys 2018, 9–45 (2018).

    Google Scholar 

  • Dennis, E. B., Freeman, S. N., Brereton, T. & Roy, D. B. Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern. Methods Ecol. Evol. 4, 637–645 (2013).

    Google Scholar 

  • Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).

    PubMed 

    Google Scholar 

  • Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638 (2013).

    Google Scholar 

  • Carnicer, J. et al. A unified framework for diversity gradients: the adaptive trait continuum. Glob. Ecol. Biogeogr. 22, 6–18 (2013).

    Google Scholar 

  • Klok, E. J. & Klein Tank, A. M. G. Updated and extended European dataset of daily climate observations. Int. J. Climatol. 29, 1182–1191 (2009).

    Google Scholar 

  • Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res. Atmos. 113, D20119 (2008).

    Google Scholar 

  • Marsh, T. J. The UK drought of 2003: a hydrological review. Weather 59, 224–230 (2004).

    Google Scholar 

  • Voyer, A. G. & Garamszegi, L. Z. An introduction to phylogenetic path analysis. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (eds Garamszegi, L. Z. & Mundry, R.) 201–229 (Springer Berlin Heidelberg, 2014).

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Pöyry, J. et al. The effects of soil eutrophication propagate to higher trophic levels. Glob. Ecol. Biogeogr. 26, 18–30 (2017).

    Google Scholar 

  • Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • Bartoń, K. MuMIn: Multi-model inference. R package version 1.10.5. (2014).

  • Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). MEE. 3, 217–223 (2012).

    Google Scholar 

  • Briere, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).

    Google Scholar 

  • Shi, P. & Ge, F. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Therm. Biol. 35, 225–231 (2010).

    Google Scholar 

  • Angilletta, M. J., Wilson, R. S., Navas, C. A. & James, R. S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 18, 234–240 (2003).

    Google Scholar 

  • Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 1–9 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise