in

Local neural-network-weighted models for occurrence and number of down wood in natural forest ecosystem

  • Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).

    Article 

    Google Scholar 

  • Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. In Advances in Ecological Research (eds MacFadyen, A. & Ford, E. D.) 133–302 (Academic Press, 1986).

    Chapter 

    Google Scholar 

  • Harmon, M. E. & Bell, D. M. Mortality in forested ecosystems: suggested conceptual advances. Forests 11, 572 (2020).

    Article 

    Google Scholar 

  • van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the Western United States. Science 323, 521–524 (2009).

    ADS 
    Article 

    Google Scholar 

  • Kinnucan, H. W. Timber price dynamics after a natural disaster: Hurricane Hugo revisited. J. For. Econ. 25, 115–129 (2016).

    Google Scholar 

  • Marsinko, A. P., Straka, T. J. & Haight, R. G. The effect of a large-scale natural disaster on regional timber supply. J. World For. Resour. Manag. 8, 75–85 (1997).

    Google Scholar 

  • Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecol. 33, 368–398 (2008).

    Article 

    Google Scholar 

  • Shifley, S. R., Brookshire, B. L., Larsen, D. R. & Herbeck, L. A. Snags and down wood in missouri old-growth and mature second-growth forests. North. J. Appl. For. 14, 165–172 (1997).

    Article 

    Google Scholar 

  • Bobiec, A. Living stands and dead wood in the Białowieża forest: suggestions for restoration management. For. Ecol. Manag. 165, 125–140 (2002).

    Article 

    Google Scholar 

  • Spetich, M. A., Shifley, S. R. & Parker, G. R. Regional distribution and dynamics of coarse woody debris in midwestern old-growth forests. For. Sci. 45, 302–313 (1999).

    Google Scholar 

  • Rimle, A., Heiri, C. & Bugmann, H. Deadwood in Norway spruce dominated mountain forest reserves is characterized by large dimensions and advanced decomposition stages. For. Ecol. Manag. 404, 174–183 (2017).

    Article 

    Google Scholar 

  • Ruokolainen, A., Shorohova, E., Penttilä, R., Kotkova, V. & Kushnevskaya, H. A continuum of dead wood with various habitat elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. Eur. J. For. Res. 137, 707–718 (2018).

    Article 

    Google Scholar 

  • Ranius, T. & Kindvall, O. Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural practices in Sweden. Biol. Conserv. 119, 51–59 (2004).

    Article 

    Google Scholar 

  • Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 118, 281–299 (2004).

    Article 

    Google Scholar 

  • Svensson, M. et al. The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol. 20, 166–174 (2016).

    Article 

    Google Scholar 

  • Bahuguna, D., Mitchell, S. J. & Nishio, G. R. Post-harvest windthrow and recruitment of large woody debris in riparian buffers on Vancouver Island. Eur. J. For. Res. 131, 249–260 (2012).

    Article 

    Google Scholar 

  • Fortin, M. & DeBlois, J. Modeling tree recruitment with zero-inflated models: the example of hardwood stands in southern Quebec Canada. For. Sci. 53, 529–539 (2007).

    Google Scholar 

  • Herrero, C., Pando, V. & Bravo, F. Modelling coarse woody debris in Pinus spp. Plantations. A case study in Northern Spain. Ann. For. Sci. 67, 708–708 (2010).

    Article 

    Google Scholar 

  • Arekhi, S. Modeling spatial pattern of deforestation using GIS and logistic regression: a case study of northern Ilam forests, Ilam province Iran. Afr. J. Biotechnol. 10, 16236–16249 (2011).

    Google Scholar 

  • Kumar, R., Nandy, S., Agarwal, R. & Kushwaha, S. P. S. Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecol. Indic. 45, 444–455 (2014).

    Article 

    Google Scholar 

  • Podur, J. J., Martell, D. L. & Stanford, D. A compound poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics 21, 457–469 (2010).

    MathSciNet 

    Google Scholar 

  • Tobler, W. R. A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46, 234–240 (1970).

    Article 

    Google Scholar 

  • Griffith, D. & Chun, Y. Spatial autocorrelation and spatial filtering. In Handbook of regional science 1477–1507 (eds Fischer, M. M. & Nijkamp, P.) (Springer, 2014). https://doi.org/10.1007/978-3-642-23430-9_72.

    Chapter 

    Google Scholar 

  • Li, T. & Meng, Q. Forest dynamics in relation to meteorology and soil in the Gulf Coast of Mexico. Sci. Total Environ. 702, 134913 (2019).

    ADS 
    Article 

    Google Scholar 

  • Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).

    Article 

    Google Scholar 

  • Fotheringham, A. S., Charlton, M. E. & Brunsdon, C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 30, 1905–1927 (1998).

    Article 

    Google Scholar 

  • Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. Spatiotemporal changes in vegetation cover and its influencing factors in the loess Plateau of China based on the geographically weighted regression model. Forests 12, 673 (2021).

    Article 

    Google Scholar 

  • Monjarás-Vega, N. et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total Environ. 718, 137313 (2020).

    ADS 
    Article 

    Google Scholar 

  • Peng, X., Wu, H. & Ma, L. A study on geographically weighted spatial autoregression models with spatial autoregressive disturbances. Commun. Stat. Theor. Methods 49, 5235–5251 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • Harris, P. & Brunsdon, C. Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics. Comput. Geosci. 36, 54–70 (2010).

    ADS 
    Article 

    Google Scholar 

  • Li, J., Jin, M. & Li, H. Exploring spatial influence of remotely sensed PM2.5 concentration using a developed deep convolutional neural network model. Int. J. Environ. Res. Public Health 16, 454 (2019).

    Article 

    Google Scholar 

  • Peng, C., Wang, M. & Chen, W. Spatial analysis of PAHs in soils along an urban-suburban-rural gradient: scale effect, distribution patterns, diffusion and influencing factors. Sci. Rep. 6, 37185 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wu, S. et al. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships. Int. J. Geogr. Inf. Sci. 35, 582–608 (2021).

    Article 

    Google Scholar 

  • Wu, S. et al. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression. Sci. Total Environ. 709, 136097 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Du, Z., Wang, Z., Wu, S., Zhang, F. & Liu, R. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 34, 1353–1377 (2020).

    Article 

    Google Scholar 

  • Sun, Y., Ao, Z., Jia, W., Chen, Y. & Xu, K. A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in liangshui national nature reserve (China). IForest 14, 353–361 (2021).

    Article 

    Google Scholar 

  • Wilkinson, L. Tests of significance in stepwise regression. Psychol. Bull. 86, 168–174 (1979).

    Article 

    Google Scholar 

  • Henderson, D. A. & Denison, D. R. Stepwise regression in social and psychological research. Psychol. Rep. 64, 251–257 (1989).

    Article 

    Google Scholar 

  • Carl, G. & Kühn, I. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol. Model. 207, 159–170 (2007).

    Article 

    Google Scholar 

  • Wu, W. & Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62 (2013).

    Article 

    Google Scholar 

  • Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 405, 123–136 (2011).

    ADS 
    Article 

    Google Scholar 

  • Pineda Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M. & Franco, Plata R. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Appl. Geogr. 30, 576–591 (2010).

    Article 

    Google Scholar 

  • Tutmez, B., Kaymak, U., Erhan Tercan, A. & Lloyd, C. D. Evaluating geo-environmental variables using a clustering based areal model. Comput. Geosci. 43, 34–41 (2012).

    ADS 
    Article 

    Google Scholar 

  • Li, X., Wu, P., Guo, F.-T. & Hu, X. A geographically weighted regression approach to detect divergent changes in the vegetation activity along the elevation gradients over the last 20 years. For. Ecol. Manag. 490, 119089 (2021).

    Article 

    Google Scholar 

  • Que, X., Ma, C., Ma, X. & Chen, Q. Parallel computing for fast spatiotemporal weighted regression. Comput. Geosci. 150, 104723 (2021).

    Article 

    Google Scholar 

  • Wu, L. et al. Spatial analysis of severe fever with thrombocytopenia syndrome virus in China using a geographically weighted logistic regression model. Int. J. Environ. Res. Public Health 13, 1125 (2016).

    Article 

    Google Scholar 

  • Liu, Y. et al. Geographical variations in maternal lifestyles during pregnancy associated with congenital heart defects among live births in Shaanxi province Northwestern China. Sci. Rep. 10, 12958 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saefuddin, A., Saepudin, D. & Kusumaningrum, D. Geographically weighted poisson regression (GWPR) for analyzing the malnutrition data in java-Indonesia (European Regional Science Association (ERSA), 2013).

    Google Scholar 

  • Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ketkar, N. Introduction to Keras. In Deep learning with python: a hands-on introduction (ed. Ketkar, N.) 97–111 (Apress, 2017). https://doi.org/10.1007/978-1-4842-2766-4_7.

    Chapter 

    Google Scholar 

  • Tsomokos, D. I., Ashhab, S. & Nori, F. Fully connected network of superconducting qubits in a cavity. New J. Phys. 10, 113020 (2008).

    ADS 
    Article 

    Google Scholar 

  • Hu, T. et al. Study on the estimation of forest volume based on multi-source data. Sensors 21, 7796 (2021).

    ADS 
    Article 

    Google Scholar 

  • Chen, L., Ren, C., Zhang, B., Wang, Z. & Xi, Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 9, 582 (2018).

    Article 

    Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    MathSciNet 
    MATH 

    Google Scholar 

  • Mastromichalakis, S. ALReLU: A different approach on Leaky ReLU activation function to improve neural networks performance. arXiv:2012.07564 [Cs] arXiv:2012.07564 (2021).

  • Chen, C., Li, Y., Yan, C., Dai, H. & Liu, G. A robust algorithm of multiquadric method based on an improved huber loss function for interpolating remote-sensing-derived elevation data sets. Remote Sens. 7, 3347–3371 (2015).

    ADS 
    Article 

    Google Scholar 

  • de Jong, P., Sprenger, C. & Veen, F. On extreme values of Moran’s I and Geary’s c ( spatial autocorrelation). Geogr. Anal. 16, 17–24 (1984).

    Article 

    Google Scholar 

  • Fu, W. J., Jiang, P. K., Zhou, G. M. & Zhao, K. L. Using Moran’s i and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 11, 2401–2409 (2014).

    ADS 
    Article 

    Google Scholar 

  • Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B. & Simmons, C. T. Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran. Sci. Rep. 10, 17473 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Moore, J. R. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. For. Ecol. Manag. 135, 63–71 (2000).

    Article 

    Google Scholar 

  • Lanquaye-Opoku, N. & Mitchell, S. J. Portability of stand-level empirical windthrow risk models. For. Ecol. Manag. 216, 134–148 (2005).

    Article 

    Google Scholar 

  • Li, X. et al. Response of species and stand types to snow/wind damage in a temperate secondary forest Northeast China. J. For. Res. 29, 395–404 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zhen, Z. et al. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl. Geogr. 37, 114–126 (2013).

    Article 

    Google Scholar 

  • Vozmishcheva, A. et al. Strong disturbance impact of tropical cyclone Lionrock (2016) on Korean pine-broadleaved forest in the Middle Sikhote-Alin Mountain range Russian Far East. Forests 10, 15 (2019).

    Article 

    Google Scholar 

  • Bivand, R., Müller, W. G. & Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal. 53, 2859–2872 (2009).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Yuan, J. et al. Dynamics of coarse woody debris characteristics in the Qinling mountain forests in China. Forests 8, 403–403 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 61, 246–253 (1997).

    ADS 
    Article 

    Google Scholar 

  • Næsset, E. Determination of mean tree height of forest stands by digital photogrammetry. Scand. J. For. Res. 17, 446–459 (2002).

    ADS 
    Article 

    Google Scholar 

  • Rich, R. L., Frelich, L. E. & Reich, P. B. Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J. Ecol. 95, 1261–1273 (2007).

    Article 

    Google Scholar 

  • Odhiambo, B. O., Kenduiywo, B. K. & Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. Appl. Geogr. 114, 102129 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Looking forward to forecast the risks of a changing climate

    Sexual morph specialisation in a trioecious nematode balances opposing selective forces