in

Long-distance, synchronized and directional fall movements suggest migration in Arctic hares on Ellesmere Island (Canada)

  • Jeltsch, F. et al. Integrating movement ecology with biodiversity research—Exploring new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol. 1, 6 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dingle, H. Migration: The Biology of Life on the Move Migration (Oxford University Press, 2014).

  • Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).

    Google Scholar 

  • Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Nifong, J. C., Layman, C. A. & Silliman, B. R. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J. Anim. Ecol. 84, 35–48 (2015).

    PubMed 

    Google Scholar 

  • Giroux, M.-A. et al. Benefiting from a migratory prey: Spatio-temporal patterns in allochthonous subsidization of an arctic predator. J. Anim. Ecol. 81, 533–542 (2012).

    PubMed 

    Google Scholar 

  • Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).

    Google Scholar 

  • Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: Individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).

    PubMed 

    Google Scholar 

  • Teitelbaum, C. S. & Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34, 569–581 (2019).

    PubMed 

    Google Scholar 

  • Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).

    Google Scholar 

  • Avgar, T., Street, G. & Fryxell, J. M. On the adaptive benefits of mammal migration. Can. J. Zool. 92, 481–490 (2014).

    Google Scholar 

  • Barbour, M. G. & Billings, W. D. North American Terrestrial Vegetation (Cambridge University Press, 2000).

    Google Scholar 

  • Smith, S. L., Throop, J. & Lewkowicz, A. G. Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada. Can. J. Earth Sci. 49, 914–924 (2012).

    ADS 

    Google Scholar 

  • Lévesque, E. Plant Distribution and Colonization in Extreme Polar Deserts, Ellesmere Island, Canada (University of Toronto, 1997).

    Google Scholar 

  • Bliss, L. C., Svoboda, J. & Bliss, D. I. Polar deserts, their plant cover and plant production in the Canadian High Arctic. Holarctic Ecol. 7, 305–324 (1984).

    Google Scholar 

  • Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arctic Sci. 3, 65–90 (2017).

    Google Scholar 

  • Duchesne, D., Gauthier, G. & Berteaux, D. Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167, 967–980 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • Fuglei, E., Blanchet, M.-A., Unander, S., Ims, R. A. & Pedersen, Å. Ø. Hidden in the darkness of the Polar night: A first glimpse into winter migration of the Svalbard rock ptarmigan. Wildl. Biol. 2017, SP1 (2017).

    Google Scholar 

  • Schmidt, N. M. et al. Ungulate movement in an extreme seasonal environment: Year-round movement patterns of high-arctic muskoxen. Wildl. Biol. 22, 253–267 (2016).

    Google Scholar 

  • Berteaux, D. & Lai, S. Walking on water: Terrestrial mammal migrations in the warming Arctic. Anim. Migr. 8, 65–73 (2021).

    Google Scholar 

  • Gnanadesikan, G. E., Pearse, W. D. & Shaw, A. K. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7, 5891–5900 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Best, T. L. & Henry, T. H. Lepus arcticus. Mamm. Species 1–9 (1994).

  • Dalerum, F. et al. Exploring the diet of arctic wolves (Canis lupus arctos) at their northern range limit. Can. J. Zool. 96, 277–281 (2018).

    Google Scholar 

  • Mech, L. D. Annual arctic wolf pack size related to arctic hare numbers. Arctic 60, 309–311 (2007).

    Google Scholar 

  • Small, R. J., Keith, L. B. & Barta, R. M. Demographic responses of Arctic hares Lepus arcticus placed on two predominantly forested islands in Newfoundland. Ecography 15, 161–165 (1992).

    Google Scholar 

  • Small, R. J., Keith, L. B. & Barta, R. M. Dispersion of introduced arctic hares (Lepus arcticus) on islands off Newfoundland’s south coast. Can. J. Zool. 69, 2618–2623 (1991).

    Google Scholar 

  • Hearn, B. J., Keith, L. B. & Rongstad, O. J. Demography and ecology of the arctic hare (Lepus arcticus) in southwestern Newfoundland. Can. J. Zool. 65, 852–861 (1987).

    Google Scholar 

  • Harper, F. The Mammals of Keewatin Vol. 12 (Miscellaneaous Publications, Museum of Natural History, University of Kansas, 1956).

    Google Scholar 

  • Dalerum, F. et al. Spatial variation in Arctic hare (Lepus arcticus) populations around the Hall Basin. Polar Biol. 40, 2113–2118 (2017).

    Google Scholar 

  • Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).

    Google Scholar 

  • CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri (2013).

  • Desjardins, É. et al. Survey of the vascular plants of Alert (Ellesmere Island, Canada), a polar desert at the northern tip of the Americas. CheckList 17, 181–225 (2021).

    Google Scholar 

  • Keith, L. B., Meslow, E. C. & Rongstad, O. J. Techniques for snowshoe hare population studies. J. Wildl. Manag. 32, 801–812 (1968).

    Google Scholar 

  • Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370, 712–715 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wikelski, M., Davidson, S. C. & Kays, R. Movebank: Archive, analysis and sharing of animal movement data. Hosted by the Max Planck Institute of Animal Behavior. http://www.movebank.org (2021).

  • Berteaux, D. Data from: Study ‘Arctic hare Alert—Argos tracking’. MoveBank Data Repository https://doi.org/10.5441/001/1.d5d912c4 (2021).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).

  • Christin, S., St-Laurent, M.-H. & Berteaux, D. Evaluation of Argos telemetry accuracy in the High-Arctic and implications for the estimation of home-range size. PLoS One 10, e0141999 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • QGIS Association. QGIS Geographic Information System (2021).

  • Harris, S. et al. Home-range analysis using radio-tracking data? A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).

    Google Scholar 

  • Le Corre, M., Dussault, C. & Côté, S. D. Detecting changes in the annual movements of terrestrial migratory species: Using the first-passage time to document the spring migration of caribou. Mov. Ecol. 2, 19 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholson, K. L., Arthur, S. M., Horne, J. S., Garton, E. O. & Vecchio, P. A. D. Modeling caribou movements: Seasonal ranges and migration routes of the central Arctic herd. PLoS One 11, e0150333 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, M. E., Mech, L. D. & Frame, P. F. Tracking of white-tailed deer migration by global positioning system. J. Mammal. 85, 505–510 (2004).

    Google Scholar 

  • Singh, N. J. & Ericsson, G. Changing motivations during migration: Linking movement speed to reproductive status in a migratory large mammal. Biol. Lett. 10, 20140379 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakes, A. F. et al. Classifying the migration behaviors of pronghorn on their northern range. J. Wildl. Manag. 82, 1229–1242 (2018).

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2015).

  • Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).

    Google Scholar 

  • Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).

    Google Scholar 

  • Austin, R. E. et al. Patterns of at-sea behaviour at a hybrid zone between two threatened seabirds. Sci. Rep. 9, 14720 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gillis, E. A. & Krebs, C. J. Natal dispersal of snowshoe hares during a cyclic population increase. J. Mammal. 80, 933–939 (1999).

    Google Scholar 

  • Dahl, F. & Willebrand, T. Natal dispersal, adult home ranges and site fidelity of mountain hares (Lepus timidus) in the boreal forest of Sweden. Wildl. Biol. 11, 309–317 (2005).

    Google Scholar 

  • Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 495, 1–11 (1995).

    Google Scholar 

  • Smith, G. W., Stoddart, L. C. & Knowlton, F. F. Long-distance movements of black-tailed jackrabbits. J. Wildl. Manag. 66, 463 (2002).

    Google Scholar 

  • Cote, J. et al. Behavioural synchronization of large-scale animal movements—Disperse alone, but migrate together?. Biol. Rev. 92, 1275–1296 (2017).

    PubMed 

    Google Scholar 

  • Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B 287, 20200622 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lai, S. et al. Unsuspected mobility of Arctic hares revealed by longest journey ever recorded in a lagomorph. Ecology 103(3), e3620 https://doi.org/10.1002/ecy.3620 (2022).

    PubMed 

    Google Scholar 

  • Abrahms, B. et al. Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Mov. Ecol. 5, 12 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).

    Google Scholar 

  • Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N. & Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 22, 2007–2020 (2012).

    PubMed 

    Google Scholar 

  • Bastille-Rousseau, G. et al. Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Mov. Ecol. 4, 15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—From individual behaviors to population distributions. Oikos 117, 654–664 (2008).

    Google Scholar 

  • Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).

    PubMed 

    Google Scholar 

  • Reid, N. & Harrison, A. Post-release GPS tracking of hand-reared Irish hare Lepus timidus hibernicus leverets, Slemish, Co. Antrim, Northern Ireland. J. Wildl. Rehabil. 31, 25 (2011).

    Google Scholar 

  • Weterings, M. J. A. et al. Strong reactive movement response of the medium-sized European hare to elevated predation risk in short vegetation. Anim. Behav. 115, 107–114 (2016).

    Google Scholar 

  • Krebs, C. J., Boutin, S. & Boonstra, R. Ecosystem Dynamics of the Boreal Forest: The Kluane Project (Oxford University Press, 2001).

    Google Scholar 

  • Feierabend, D. & Kielland, K. Movements, activity patterns, and habitat use of snowshoe hares (Lepus americanus) in interior Alaska. J. Mammal. 95, 525–533 (2014).

    Google Scholar 

  • Levänen, R., Pohjoismäki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).

    Google Scholar 

  • Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. U.S.A. 105, 19052–19059 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).

    PubMed 

    Google Scholar 

  • France, R. L. The Lake Hazen trough: A late winter oasis in a polar desert. Biol. Conserv. 63, 149–151 (1993).

    Google Scholar 

  • Jenkins, D. A., Campbell, M., Hope, G., Goorts, J. & McLoughlin, P. Recent trends in abundance of Peary caribou (Rangifer tarandus pearyi) and muskoxen (Ovibos moschatus) in the Canadian Arctic Archipelago, Nunavut 233.

  • Mech, L. Proportion of calves and adult muskoxen, Ovibos moschatus killed by gray wolves, Canis lupus, in July on Ellesmere Island (USGS Northern Prairie Wildlife Research Center, 2010).

    Google Scholar 

  • Gunn, A., Miller, F., Barry, S. & Buchan, A. A near-total decline in caribou on Prince of Wales, Somerset, and Russell Islands, Canadian Arctic. Arctic 59, 1–13 (2006).

    Google Scholar 

  • Edwards, J. Diet shifts in moose due to predator avoidance. Oecologia 60, 185–189 (1983).

    ADS 
    PubMed 

    Google Scholar 

  • Gustine, D. D., Parker, K. L., Lay, R. J., Gillingham, M. P. & Heard, D. C. Calf survival of woodland caribou in a multi-predator ecosystem. Wildl. Monogr. 165, 1–32 (2006).

    Google Scholar 

  • Klein, D. & Bay, C. Diet selection by vertebrate herbivores in the High Arctic of Greenland. Ecography 14, 152–155 (1991).

    Google Scholar 

  • Parks Canada. Resource Description and Analysis—Ellesmere Island National Park Reserve Vol. 1 (Natural Resource Conservation Section, Parks Canada, Department of Canadian Heritage, 1994).

    Google Scholar 

  • Parks Canada. Quttinirpaaq National Park of Canada: Management plan 76. https://www.pc.gc.ca/en/pn-np/nu/quttinirpaaq/info/index/gestion-management-2009 (2009).

  • Winkler, D. W. et al. Cues, strategies, and outcomes: How migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).

    Google Scholar 

  • Robinson, R. et al. Travelling through a warming world: Climate change and migratory species. Endang. Species Res. 7, 87–99 (2009).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Bettina Stoetzer on envisioning a livable future

    Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L.