in

Long-term, basin-scale salinity impacts from desalination in the Arabian/Persian Gulf

  • Al-Mutawa, A. M., Al Murbati, W. M., Al Ruwaili, N. A., Al Orafi, A. S., Al Orafi, A., Al Arafati, A., Nasrullah, A., Al Bahow, M. R., Al Anzi, S. M., Rashisi, M. & Al Moosa, S. Z. Desalination in the gcc. the history, the present & the future. Available from: https://www.gcc-sg.org/en-us/CognitiveSources/DigitalLibrary/Lists/DigitalLibrary/WaterandElectricity/1414489603.pdf Second edition, The Cooperation Council for the Arab States of the Gulf (GCC) General Secretariat (2014).

  • Global Water Intelligence. DesalData. https://www.desaldata.com/. Accessed 2022-05-01 (2022).

  • Sharifinia, M., Afshari Bahmanbeigloo, Z., Smith Jr, W. O., Yap, C. K. & Keshavarzifard, M. Prevention is better than cure: Persian gulf biodiversity vulnerability to the impacts of desalination plants. Glob. Change Biol. 25(12), 4022–4033 (2019).

    Article 

    Google Scholar 

  • Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World. Number 79. UNESCO, (2015).

  • Al-Senafy, M., Al-Fahad, K. & Hadi, K. Water management strategies in the Arabian gulf countries. In Developments in Water Science, volume 50, pages 221–224. Elsevier, (2003).

  • Ulrichsen, K.C.. Internal and external security in the arab gulf states. Middle East Policy16(2), 39 (2009).

  • Verner, D. Adaptation to a changing climate in the Arab countries: a case for adaptation governance and leadership in building climate resilience. Number 79. World Bank Publications, (2012).

  • Einav, R., Harussi, K. & Perry, D. The footprint of the desalination processes on the environment. Desalination 152(1–3), 141–154 (2003).

    Article 

    Google Scholar 

  • Dawoud, M. A. Environmental impacts of seawater desalination: Arabian Gulf case study. Int. J. Environ. Sustain.1(3) (2012).

  • Chow, A. C. et al. Numerical prediction of background buildup of salinity due to desalination brine discharges into the Northern Arabian Gulf. Water 11(11), 2284 (2019).

    Article 

    Google Scholar 

  • Lee, K. & Jepson, W. Environmental impact of desalination: A systematic review of life cycle assessment. Desalination 509, 115066 (2021).

    Article 

    Google Scholar 

  • Hosseini, H. et al. Marine health of the Arabian gulf: Drivers of pollution and assessment approaches focusing on desalination activities. Mar. Pollut. Bull. 164, 112085 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Le Quesne, W. J. F. et al. Is the development of desalination compatible with sustainable development of the Arabian Gulf?. Mar. Pollut. Bull. 173, 112940 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kress, N., & Galil, B. Impact of seawater desalination by reverse osmosis on the marine environment. Efficient Desalination by Reverse Osmosis: A guide to RO practice. IWA, London, UK, pp. 177–202 (2015).

  • Reynolds, R. M. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman: Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35–59 (1993).

    Article 

    Google Scholar 

  • Swift, S. A. & Bower, A. S. Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. Oceans 108(C1), 1–4 (2003).

    Article 

    Google Scholar 

  • Pous, S. P., Carton, X., & Lazure, P. Hydrology and circulation in the strait of hormuz and the Gulf of Oman: Results from the gogp99 experiment: 1. strait of hormuz. J. Geophys. Res. Oceans109(C12), (2004).

  • Pous, S., Lazure, P. & Carton, X. A model of the general circulation in the persian gulf and in the strait of hormuz: Intraseasonal to interannual variability. Cont. Shelf Res. 94, 55–70 (2015).

    Article 

    Google Scholar 

  • Johns, W. E., Yao, F., Olson, D. B., Josey, S. A., Grist, J. P. & Smeed, D. A. Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res. Oceans108(C12) (2003).

  • Hassanzadeh, S., Hosseinibalam, F. & Rezaei-Latifi, A. Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian gulf. Appl. Math. Model. 35(3), 1512–1537 (2011).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Price, A. R. G. Western Arabian gulf echinoderms in high salinity waters and the occurrence of dwarfism. J. Nat. Hist. 16(4), 519–527 (1982).

    Article 

    Google Scholar 

  • Sheppard, C. R. C. Similar trends, different causes: Responses of corals to stressed environments in Arabian seas. In Proceedings of the 6th International Coral Reef Symposium Townsville, Australia, volume 3, pp. 297–302 (1988).

  • Coles, S. L. & Jokiel, P. L. Effects of salinity on coral reefs. In Connell, D. W., & Hawker, D. W. editors, Pollution in tropical aquatic systems, pp. 147–166. CRC Press, Florida (1992).

  • Coles, S. L. Coral species diversity and environmental factors in the Arabian gulf and the Gulf of Oman: A comparison to the Indo-Pacific region. Atoll Res. Bull. (2003).

  • D’Agostino, D. et al. Growth impacts in a changing ocean: Insights from two coral reef fishes in an extreme environment. Coral Reefs 40(2), 433–446 (2021).

    Article 

    Google Scholar 

  • Bœuf, G. & Payan, P. How should salinity influence fish growth?. Compar. Biochem. Physiol. Part C Toxicol. Pharmacol. 130(4), 411–423 (2001).

    Article 

    Google Scholar 

  • Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of north sea fishes. Glob. Change Biol. 20(4), 1023–1031 (2014).

    Article 

    Google Scholar 

  • Dore, M. H. I. Forecasting the economic costs of desalination technology. Desalination 172(3), 207–214 (2005).

    Article 

    Google Scholar 

  • Karagiannis, I. C. & Soldatos, P. G. Water desalination cost literature: Review and assessment. Desalination 223(1–3), 448–456 (2008).

    Article 

    Google Scholar 

  • Al Barwani, H. H. & Purnama, A. Evaluating the effect of producing desalinated seawater on hypersaline Arabian Gulf. Eur. J. Sci. Res. 22(2), 279–285 (2008).

    Google Scholar 

  • Lee, W. & Kaihatu, J. M. Effects of desalination on hydrodynamic process in Persian Gulf. Coast. Eng. Proc. 36, 3–3 (2018).

    Article 

    Google Scholar 

  • Ibrahim, H. D. & Eltahir, E. A. B. Impact of brine discharge from seawater desalination plants on Persian/Arabian gulf salinity. J. Environ. Eng. 145(12), 04019084 (2019).

    Article 

    Google Scholar 

  • Campos, E. J. D. et al. Impacts of brine disposal from water desalination plants on the physical environment in the Persian/Arabian Gulf. Environ. Res. Commun. 2(12), 125003 (2020).

    Article 

    Google Scholar 

  • Ibrahim, H. D., Xue, P. & Eltahir, E. A. B. Multiple salinity equilibria and resilience of Persian/Arabian Gulf basin salinity to brine discharge. Front. Mar. Sci. 7, 573 (2020).

    Article 

    Google Scholar 

  • Ibrahim, H. D. Simulated effects of seawater desalination on Persian/Arabian Gulf exchange flow. J. Environ. Eng. 148(4), 04022012 (2022).

    Article 

    Google Scholar 

  • Purnama, A. Assessing the environmental impacts of seawater desalination on the hypersalinity of arabian/persian gulf. In The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures, pp. 1229–1245. Springer, (2021).

  • GEBCO Compilation Group. The GEBCO_2021 grid: A continuous terrain model of the global oceans and land, (2021).

  • Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13(2), 224–230 (1961).

    Article 

    Google Scholar 

  • Nakamura, M., Stone, P. H. & Marotzke, J. Destabilization of the thermohaline circulation by atmospheric eddy transports. J. Clim. 7(12), 1870–1882 (1994).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0442(1994)0072.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0442%281994%29007%3C1870%3ADOTTCB%3E2.0.CO%3B2″ aria-label=”Article reference 39″ data-doi=”10.1175/1520-0442(1994)0072.0.CO;2″>Article 

    Google Scholar 

  • Pasquero, C. & Tziperman, E. Effects of a wind-driven gyre on thermohaline circulation variability. J. Phys. Oceanogr. 34(4), 805–816 (2004).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0485(2004)0342.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0485%282004%29034%3C0805%3AEOAWGO%3E2.0.CO%3B2″ aria-label=”Article reference 40″ data-doi=”10.1175/1520-0485(2004)0342.0.CO;2″>Article 

    Google Scholar 

  • Lucarini, V. & Stone, P. H. Thermohaline circulation stability: A box model study. part ii: coupled atmosphere-ocean model. J. Clim. 18(4), 514–529 (2005).

    Article 

    Google Scholar 

  • Wunsch, C. Thermohaline loops, stommel box models, and the sandström theorem. Tellus A Dyn. Meteorol. Oceanogr. 57(1), 84–99 (2005).

    Google Scholar 

  • Privett, D. W. Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf). Q. J. R. Meteorol. Soc. 85(366), 424–428 (1959).

    Article 

    Google Scholar 

  • Chao, S.-Y., Kao, T. W. & Al-Hajri, K. R. A numerical investigation of circulation in the Arabian Gulf. J. Geophys. Res. Oceans 97(C7), 11219–11236 (1992).

    Article 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020).

    Article 

    Google Scholar 

  • Thoppil, P. G. & Hogan, P. J. Persian Gulf response to a wintertime shamal wind event. Deep Sea Res. Part I 57(8), 946–955 (2010).

    Article 

    Google Scholar 

  • Paparella, F., Chenhao, X., Vaughan, G. O. & Burt, J. A. Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds. Front. Mar. Sci. 6, 205 (2019).

    Article 

    Google Scholar 

  • Gutiérrez, J.M., Jones, R. G., Narisma, G.T., Alves, L.M., Amjad, M., Gorodetskaya, I.V., Grose, M., Klutse, N.A.B., Krakovska, S., Li, J., Martínez-Castro, D., Mearns, L.O., Mernild, S.H., Ngo-Duc, T., van den Hurk, B. & Yoon, J.-H. Atlas. In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, editors, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, (2021). Available from http://interactive-atlas.ipcc.ch/.

  • Alosairi, Y., Imberger, J., & Falconer, R. A. Mixing and flushing in the Persian Gulf (Arabian Gulf). J. Geophys. Res. Oceans116(C3) (2011).

  • Whitehead, J. A. Internal hydraulic control in rotating fluids – applications to oceans. Geophys. Astrophys. Fluid Dyn. 48(1–3), 169–192 (1989).

    Article 
    MATH 

    Google Scholar 

  • Dougherty, W. W., Yates, D. N., Pereira, J. E., Monaghan, A., Steinhoff, D., Ferrero, B., Wainer, I., Flores-Lopez, F., Galaitsi, S., & Kucera, P., et al. The energy–water–health nexus under climate change in the united arab emirates: Impacts and implications. In Climate Change and Energy Dynamics in the Middle East, pp. 131–180. Springer, (2019).

  • Al-Shehhi, M. R., Song, H., Scott, J. & Marshall, J. Water mass transformation and overturning circulation in the Arabian gulf. J. Phys. Oceanogr. 51(11), 3513–3527 (2021).

    Google Scholar 

  • Hausfather, Z. & Peters, G. P. Emissions-the “business as usual’’ story is misleading. Nature 577, 618–620 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 28, 222–239 (2019).

    Article 

    Google Scholar 

  • Riegl, B. M. & Purkis, S. J. Coral reefs of the gulf: adaptation to climatic extremes in the world’s hottest sea. In Coral reefs of the Gulf, pp. 1–4. Springer, (2012).

  • Burt, J. A. et al. Insights from extreme coral reefs in a changing world. Coral Reefs 39(3), 495–507 (2020).

    Article 

    Google Scholar 

  • D’Agostino, D. et al. The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian gulf. Coral Reefs 39(3), 733–744 (2020).

    Article 

    Google Scholar 

  • Lachkar, Z., Mehari, M., Lévy, M., Paparella, F., & Burt, J.A. Recent expansion and intensification of hypoxia in the Arabian gulf and its drivers. Front. Mar. Sci. 1616 (2022).

  • De Verneil, A., Burt, J. A., Mitchell, M., & Paparella, F. Summer oxygen dynamics on a southern Arabian Gulf coral reef. Front. Mar. Sci. 1676 (2021).

  • Petersen, K. L. et al. Impact of brine and antiscalants on reef-building corals in the gulf of aqaba-potential effects from desalination plants. Water Res. 144, 183–191 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Sanchez-Lizaso, J. L. et al. Salinity tolerance of the mediterranean seagrass posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221(1–3), 602–607 (2008).

    Article 

    Google Scholar 

  • Cambridge, M. L., Zavala-Perez, A., Cawthray, G. R., Mondon, J. & Kendrick, G. A. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass posidonia australis. Mar. Pollut. Bull. 115(1–2), 252–260 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Cambridge, M. L. et al. Effects of desalination brine and seawater with the same elevated salinity on growth, physiology and seedling development of the seagrass posidonia australis. Mar. Pollut. Bull. 140, 462–471 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kelaher, B. P., Clark, G. F., Johnston, E. L. & Coleman, M. A. Effect of desalination discharge on the abundance and diversity of reef fishes. Environ. Sci. Technol. 54(2), 735–744 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gegner, H. M. et al. High salinity conveys thermotolerance in the coral model aiptasia. Biol. Open 6(12), 1943–1948 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3(8), e1602047 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gegner, H. M. et al. High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis. Biol. Open 8(12), bio045591 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thoppil, P. G. & Hogan, P. J. A modeling study of circulation and eddies in the Persian Gulf. J. Phys. Oceanogr. 40(9), 2122–2134 (2010).

    Article 

    Google Scholar 

  • Pous, S., Carton, X. & Lazure, P. A process study of the tidal circulation in the Persian gulf. Open J. Mar. Sci. 2(04), 131–140 (2012).

    Article 

    Google Scholar 

  • Haney, R. L. Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr. 1(4), 241–248 (1971).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0485(1971)0012.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0485%281971%29001%3C0241%3ASTBCFO%3E2.0.CO%3B2″ aria-label=”Article reference 70″ data-doi=”10.1175/1520-0485(1971)0012.0.CO;2″>Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Policy Hackathon produces new solutions for technology policy challenges

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference