in

Long-term ecological and evolutionary dynamics in the gut microbiomes of carbapenemase-producing Enterobacteriaceae colonized subjects

  • von Wintersdorff, C. J. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7, 173 (2016).

    Google Scholar 

  • Suay-García, B. & Pérez-Gracia, M. T. Present and future of carbapenem-resistant Enterobacteriaceae (CRE) infections. Antibiotics 8, 122 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Codjoe, F. S. & Donkor, E. S. Carbapenem resistance: a review. Med Sci. 6, 1 (2017).

    Google Scholar 

  • Schechner, V. et al. Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected? Clin. Microbiol. Infect. 19, 451–456 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Penders, J., Stobberingh, E. E., Savelkoul, P. H. & Wolffs, P. F. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol. 4, 87 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nordmann, P., Naas, T. & Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17, 1791–1798 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tooke, C. L. et al. β-Lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol. 431, 3472–3500 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sun, X. et al. Microbiota-derived metabolic factors reduce campylobacteriosis in mice. Gastroenterology 154, 1751–1763.e2 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lieberman, T. D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chu, N. D., Smith, M. B., Perrotta, A. R., Kassam, Z. & Alm, E. J. Profiling living bacteria informs preparation of fecal microbiota transplantations. PLoS ONE 12, e0170922 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ferreiro, A., Crook, N., Gasparrini, A. J. & Dantas, G. Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172, 1216–1227 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mo, Y. et al. Duration of carbapenemase-producing Enterobacteriaceae carriage in hospital patients. Emerg. Infect. Dis. 26, 2182–2185 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haverkate, M. R. et al. Duration of colonization with Klebsiella pneumoniae carbapenemase-producing bacteria at long-term acute care hospitals in Chicago, Illinois. Open Forum Infect. Dis. 3, ofw178 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Korach-Rechtman, H. et al. Intestinal dysbiosis in carriers of carbapenem-resistant Enterobacteriaceae. mSphere 5, e00173–20 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yoshida, N. et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 138, 2486–2498 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of. Gut Microbes 12, 1–16 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Riedel, C. U. et al. Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. World J. Gastroenterol. 12, 3729–3735 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeng, M. Y., Inohara, N. & Nuñez, G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 10, 18–26 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winter, S. E. & Bäumler, A. J. A breathtaking feat: to compete with the gut microbiota, Salmonella drives its host to provide a respiratory electron acceptor. Gut Microbes 2, 58–60 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rivera-Chávez, F., Lopez, C. A. & Bäumler, A. J. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 105, 93–101 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627.e17 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barreto, H. C., Sousa, A. & Gordo, I. The landscape of adaptive evolution of a gut commensal bacteria in aging mice. Curr. Biol. 30, 1102–1109.e5 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ernst, C. M. et al. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nat. Med. 26, 705–711 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Warsi, O. M., Andersson, D. I. & Dykhuizen, D. E. Different adaptive strategies in E. coli populations evolving under macronutrient limitation and metal ion limitation. BMC Evol. Biol. 18, 72 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hickman, R. A., Munck, C. & Sommer, M. O. A. Time-resolved tracking of mutations reveals diverse allele dynamics during Escherichia coli antimicrobial adaptive evolution to single drugs and drug pairs. Front. Microbiol. 8, 893 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Auriol, C., Bestel-Corre, G., Claude, J. B., Soucaille, P. & Meynial-Salles, I. Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Proc. Natl Acad. Sci. USA 108, 1278–1283 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Juers, D. H., Matthews, B. W. & Huber, R. E. LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21, 1792–1807 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rogers, A. W. L., Tsolis, R. M. & Bäumler, A. J. Salmonella versus the microbiome. Microbiol. Mol. Biol. Rev. 85, e00027–19 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hughes, E. R. et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21, 208–219 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gupta, S., Allen-Vercoe, E. & Petrof, E. O. Fecal microbiota transplantation: in perspective. Ther. Adv. Gastroenterol. 9, 229–239 (2016).

    Article 

    Google Scholar 

  • Wortelboer, K., Nieuwdorp, M. & Herrema, H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine 44, 716–729 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martinson, J. N. V. et al. Rethinking gut microbiome residency and the Enterobacteriaceae in healthy human adults. ISME J. 13, 2306–2318 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Domingo, E. & Perales, C. Viral quasispecies. PLoS Genet. 15, e1008271 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yamada, C. et al. Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chem. Biol. 24, 515–524.e5 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gao, S., Bertrand, D., Chia, B. K. & Nagarajan, N. OPERA-LG: efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with performance guarantees. Genome Biol. 17, 102 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gao, S., Bertrand, D. & Nagarajan, N. FinIS: improved in silico finishing using an exact quadratic programming formulation. Lect. Notes Comput. Sci. 7534, 314–325 (2012).

    Article 

    Google Scholar 

  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997v2 (2013).

  • Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hawinkel, S., Mattiello, F., Bijnens, L. & Thas, O. A broken promise: microbiome differential abundance methods do not control the false discovery rate. Brief. Bioinformatics 20, 210–221 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Inouye, M. et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6, 90 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 40, 11189–11201 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pracana, R., Priyam, A., Levantis, I., Nichols, R. A. & Wurm, Y. The fire ant social chromosome supergene variant Sb shows low diversity but high divergence from SB. Mol. Ecol. 26, 2864–2879 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quinlan, A. R. BEDTools: the Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–34 (2014).

    Article 

    Google Scholar 

  • Spedicato, G. Discrete time Markov chains with R. R J. 9.2, 84 (2017).

    Article 

    Google Scholar 

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).

    Article 

    Google Scholar 

  • Galata, V., Fehlmann, T., Backes, C. & Keller, A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res. 47, D195–D202 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Quan, S. et al. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli. PLoS Genet. 8, e1002444 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tsuchido, T., VanBogelen, R. A. & Neidhardt, F. C. Heat shock response in Escherichia coli influences cell division. Proc. Natl Acad. Sci. USA 83, 6959–6963 (1986).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Trubetskoy, D., Proux, F., Allemand, F., Dreyfus, M. & Iost, I. SrmB, a DEAD-box helicase involved in Escherichia coli ribosome assembly, is specifically targeted to 23S rRNA in vivo. Nucleic Acids Res. 37, 6540–6549 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garoff, L., Huseby, D. L., Praski Alzrigat, L. & Hughes, D. Effect of aminoacyl-tRNA synthetase mutations on susceptibility to ciprofloxacin in Escherichia coli. J. Antimicrob. Chemother. 73, 3285–3292 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aponte, R. A., Zimmermann, S. & Reinstein, J. Directed evolution of the DnaK chaperone: mutations in the lid domain result in enhanced chaperone activity. J. Mol. Biol. 399, 154–167 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mundhada, H. et al. Increased production of l-serine in Escherichia coli through adaptive laboratory evolution. Metab. Eng. 39, 141–150 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Conrad, T. M. et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl Acad. Sci. USA 107, 20500–20505 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, Y. et al. LPS remodeling is an evolved survival strategy for bacteria. Proc. Natl Acad. Sci. USA 109, 8716–8721 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A lasting — and valuable — legacy

    Cracking the carbon removal challenge