in

Low tropical diversity during the adaptive radiation of early land plants

  • 1.

    Gaston, K. J. Global patterns of biodiversity. Nature 405, 220–227 (2000).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).

  • 3.

    Blomenkemper, P. et al. A hidden cradle of plant evolution in Permian tropical lowlands. Science 362, 1414–1416 (2018).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study (Smithsonian Institution Scholarly Press, 1997).

  • 5.

    Puttick, M. N. et al. The interrelationships of land plants and the nature of the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, 2274–2283 (2018).

    Article 

    Google Scholar 

  • 7.

    Wellman, C. H., Steemans, P. & Vecoli, M. in Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. & Servais, T.) Ch. 29 (Geological Society of London, 2014).

  • 8.

    Edwards, D. et al. Piecing together the eophytes—a new group of ancient plants containing cryptospores. New Phytol. 233, 1440–1455 (2021).

    Article 

    Google Scholar 

  • 9.

    Gray, J. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Philos. Trans. R. Soc. Lond. B 309, 167–195 (1985).

    Article 

    Google Scholar 

  • 10.

    Wellman, C. H. Cryptospores from the type area for the Caradoc Series (Ordovician) in southern Britain. Palaeontology 55, 103–136 (1996).

    Google Scholar 

  • 11.

    Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2017).

  • 12.

    Harland, W. B. The Geology of Svalbard (Geological Society of London, 1997).

  • 13.

    Davies, N. S., Berry, C. M., Marshall, J. E. A., Wellman, C. H. & Lindemann, F.-J. The Devonian landscape factory: plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. J. Geol. Soc. Lond. https://doi.org/10.1144/jgs2020-225 (2021).

  • 14.

    Blieck, A., Goujet, D. & Janvier, P. The vertebrate stratigraphy of the Lower Devonian (Red Bay Group and Wood Bay Formation) of Spitsbergen. Mod. Geol. 11, 197–217 (1987).

    Google Scholar 

  • 15.

    Blom, H. & Goujet, D. Thelodont scales from the Lower Devonian Red Bay Group, Spitsbergen. Palaeontology 45, 795–820 (2002).

    Article 

    Google Scholar 

  • 16.

    Pernègre, V. N. & Blieck, A. A revised heterostrachan-cased ichthyostratigraphy of the Wood Bay Formation (Lower Devonian, Spitsbergen), and correlation with Russian Arctic archipelagos. Geodiversitas 38, 5–20 (2016).

    Article 

    Google Scholar 

  • 17.

    Wellman, C. H. & Richardson, J. B. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne Scotland. Spec. Pap. Palaeontol. 55, 41–101.

  • 18.

    Richardson J. B. Taxonomy and classification of some new Early Devonian cryptospores from England. Spec. Pap. Palaeontol. 55, 7–40 (1996).

  • 19.

    Steemans, P. Etude palynostratgraphique du Devonian Inferieur dans l’Ouest de l’Europe. Mém. Soc. Géol. Minér. Bretagne 27, 1–453 (1989).

    Google Scholar 

  • 20.

    Rodriguez, R. M. Palinologia de las Formaciones del Silurico Superior-Devonico Inferior de la Cordillera Cantabrica, Noroeste de España (Institución Fray Bernardino de Sahagún, de la Excelentísima Diputación provincial de León y del Servicio de Publicaciones de la Universidad de León, 1983).

  • 21.

    Richardson, J. B., Rodriguez, R. M. & Sutherland, S. J. E. Palynological zonation of Mid-Palaeozoic sequences from the Cantabrian Mountains, NW Spain: implications for inter-regional and interfacies correlation of the Ludfor/Pridoli and Silurian/Devonian boundaries, and plant dispersal patterns. Bull. Nat. Hist. Mus. Lond. 57, 115–162 (2001).

    Google Scholar 

  • 22.

    Rubinstein, C. & Steemans, P. Miospore assemblages from the Silurian–Devonian boundary, in borehole A1–61, Ghadames Basin, Libya. Rev. Palaeobot. Palynol. 118, 397–412 (2002).

    Article 

    Google Scholar 

  • 23.

    Spina, A. & Vecoli, M. Palynostratigraphy and vegetational change in the Siluro-Devonian of the Ghadamis basin, North Africa. Palaeogeog. Palaeoclimatol. Palaeoecol. 282, 1–18 (2009).

    Article 

    Google Scholar 

  • 24.

    Hao, S. G. & Gensel, P. G. in Plants Invade the Land (eds Gensel, P. G. & Edwards, D.) 103–119 (Columbia Univ. Press, 2001).

  • 25.

    Wellman, C. H. et al. Spore assemblages from the Lower Devonian Xujiachong Formation from Qujing, Yunnan, China. Palaeontology 55, 583–611 (2012).

    Article 

    Google Scholar 

  • 26.

    Hao, S. & Xue, J. The Early Devonian Posongchong Flora of Yunnan (Science Press, 2013).

  • 27.

    Edwards, D., & Li, C.-S. Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China. Rev. Palaeobot. Palynol. 253, 37–48 (2018).

    Article 

    Google Scholar 

  • 28.

    Gao, L. Early Devonian spore and acritarchs from the Guijiatum Formation of Qujing, China. Bull. Inst. Geol. Chin. Acad. Sci. 9, 125–136 (1984).

    Google Scholar 

  • 29.

    Tian, J. et al. Late Silurian to early Devonian palynomorphs from Qujing, Yunnan, southwest China. Acta Geol. Sin. 85, 559–568 (2011).

    Article 

    Google Scholar 

  • 30.

    Høeg, O. A. The Downtonian and Dittonian flora of Spitsbergen. Skr. Svalbard Ishavet 83, 1–229 (1942).

    Google Scholar 

  • 31.

    Morris, J. L., Edwards, D. & Richardson, J. B. in Transformative Paleobotany (eds Krings, M. et al.) 49–67 (Academic Press, 2018).

  • 32.

    McSweeney, F. R., Shimeta, J. & Buckeridge, J. St. J. S. Two new genera of early Tracheophyta (Zosterophyllaceae) from the upper Silurian–Lower Devonian of Victoria, Australia. Alcheringa https://doi.org/10.1080/03115518.2020.1744725 (2020).

  • 33.

    Xue, J. H. et al. Silurian–Devonian terrestrial revolution in South China: taxonomy, diversity, and character evolution of vascular plants in a paleogeographically isolated low-latitude region. Earth Sci. Rev. 180, 92–125 (2018).

    Article 

    Google Scholar 

  • 34.

    Hao, S. G. et al. Zosterophyllum Penhallow around the Silurian–Devonian boundary of northeastern Yunnan, China. Int. J. Plant Sci. 168, 477–489 (2007).

    Article 

    Google Scholar 

  • 35.

    Hao, S. G. et al. Earliest rooting system and root: shoot ratio from a new Zosterophyllum plant. New Phytol. 185, 217–225 (2009).

    Article 

    Google Scholar 

  • 36.

    Xue, J.-Z. Two zosterophyll plants from the Lower Devonian (Lochkovian) Xitun Formation of northeastern Yunnan, China. Acta Geol. Sin. 83, 504–512 (2009).

    Article 

    Google Scholar 

  • 37.

    Xue, J.-Z. Lochkovian plants from the Xitun Formation of Yunnan, China and their palaeophytogeographical significance. Geol. Mag. 149, 333–344 (2012).

    Article 

    Google Scholar 

  • 38.

    Sun, Y. et al. Lethally high temperatures during the early Triassic greenhouse. Science 6105, 366–370 (2012).

    Article 

    Google Scholar 

  • 39.

    Meng, X. Y. & Gai, Z. K. Falxcornus, a new genus of Tridensaspidae (Galeaspida, stem-Gnathostomata) from the Lower Devonian in Qujing, Yunnan, China. Hist. Biol. https://doi.org/10.1080/08912963.2021.1952198 (2021).

  • 40.

    Traverse, A. Paleopalynology 2nd edn (Springer, 2007).


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium