Badola, H. K. & Aitken, S. Potential biological resources for poverty alleviation in Indian Himalaya. Biodiver. 11(3–4), 8–18 (2010).
Pandey, A., Badola, H. K., Rai, S. & Singh, S. P. Timberline structure and woody taxa regeneration towards treeline along latitudinal gradients in Khangchendzonga National Park Eastern Himalaya. PLoS ONE 13(11), e0207762 (2018).
Google Scholar
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature https://doi.org/10.1038/nature22899 (2017).
Google Scholar
Hansen, A. J. et al. Global change in forests: Responses of species, communities, and biomes. Bio-Sciences 51, 765–779 (2001).
Gooden, B., French, K. O. & Turner, P. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia. For. Ecol. Manag. 257(3), 960–967 (2009).
Xu, Q. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Global Ecol. Cons. https://doi.org/10.1016/j.gecco.2019.e00787 (2020).
Google Scholar
Dhar, U., Rawal, R. S. & Samant, S. S. Structural diversity and representativeness of forest vegetation in a protected area of Kumaun Himalaya, India: Implications for conservation. Biodiver. Cons. 6, 1045–1062 (1997).
Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
Tomimatsu, H. et al. Consequences of forest fragmentation in an understory plant community: Extensive range expansion of native dwarf bamboo. Plant Species Biol. 26, 3–12 (2011).
Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
Google Scholar
Royo, A. A. & Carson, W. P. On the formation of dense understory layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 36, 1345–1362 (2006).
Royo, A. A., Stout, S. L. & Pierson, T. G. Restoring forest herb communities through landscape-level deer herd reductions: Is recovery limited by legacy effects?. Biol. Cons. 143, 2425–2434 (2010).
Taylor, A. H., Jinyan, H. & ShiQiang, Z. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: A 12-year study. For. Ecol. Manag. 200(1), 347–360 (2004).
Zhou, X., Chen, L. & Lin, Q. Effects of chemical foaming agents on the physico-mechanical properties and rheological behavior of bamboo powder-polypropylene foamed composites. Bio Resour. 7(2), 2183–2198 (2012).
Google Scholar
Lima, R. A., Rother, D. C., Muler, A. E., Lepsch, I. F. & Rodrigues, R. R. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol. Conserv. 147, 32–39 (2012).
Tariyal, K. Bamboo as a successful carbon sequestration substrate in Uttarakhand: A brief analysis. Int. J. Curr. Adv. Res. 5(4), 736–738 (2016).
Badoni, A.K., Badola, H. K. & Sharma, S.P. Inter-disciplinary approach towards environmental management: A case study with wild bamboos in Garhwal Himalayas, In: Prakash R (Ed), Editor. Advances in Forestry Research in India, Vol. III, Intl. Book Distrib., Dehradun. pp 261–280 (1989).
Bahadur, K. N. Bamboos in the service of man. Biol. Contemp. J. 1(2), 69–72 (1974).
Tomar, J. M. S., Hore, D. K. & Annadurai, A. Bamboos and their conservation in North-East India. Indian For. 135(6), 817–824 (2009).
Kumar, P. S., Kumari, K. U., Devi, M. P., Choudhary, V. K. & Sangeetha, A. Bamboo shoot as a source of nutraceuticals and bioactive compounds: a review. Indian J. Nat. Proc. Res. 8(1), 32–46 (2016).
Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red panda Ailurus fulgens in the Singhalila National Park, Darjeeling, India. Biol. Cons. 98(1), 11–18 (2001).
Dorji, S., Vernes, K. & Rajaratnam, A. Habitat correlates of the Red Panda in the temperate forests of Bhutan. PLoS ONE 610, 1–11 (2011).
Mohan Ram, H. Y. & Tandon, R. Bamboos and rattans—from riches to rags. Proc. Natl. Sci. Acad. India 63(3), 245–267 (1997).
Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).
Seethalakshmi, K.K. & Kumar, M.S.M. Bamboos of India: A Compendium. Bamboo Information Center, India, Kerala Forest Research Institute, Peechi and International Network for Bamboo and Ratten, Beijing (1998).
Sarmah, A., Thomas, S., Goswami, M., Haridashan, K. & Borthakur, S. K. Rattan and bamboo flora of North-East India in a conservation perspective. In Sustainable Management of Forests (eds Arunachalan, A. & Khan, M. L.) 37–45 (International Book Distributors, 2000).
Das, M., Bhattacharya, S., Singh, P., Filgueiras, T. S. & Pal, A. Bamboo taxonomy and diversity in the era of molecular markers. Adv. Bot. Res. 47, 225–268 (2008).
Google Scholar
Biswas, S. et al. Evidence of stress induced flowering in bamboo and comments on probable biochemical and molecular factors. J. Plant Biochem. Biotechnol. 30(4), 1020–1026 (2021).
Google Scholar
Ray, P. K. Gregarious flowering of a common hill bamboo Arundinaria maling. Indian For. 78(2), 89–90 (1952).
Taylor, A. H. & Zisheng, Q. Culm dynamics and dry matter production of bamboos in the Wolong and Tangjiahe giant panda reserves, Sichuan, China. J. Appl. Ecol. 24, 419–433 (1987).
Okutomi, K., Shinoda, S. & Fukuda, H. Causal analysis of the invasion of broadleaved forest by bamboo in Japan. J. Veg. Sci. 7, 723–728 (1996).
Nath, A. J., Das, M. C. & Das, A. K. Gregarious flowering in woody bamboos: Does it mean end of life?. Curr. Sci. 106(1), 12–13 (2014).
Silveira, M. Ecological aspects of bamboo-dominated Forest in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
Song, Q. N. et al. Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci. Rep. 7(1), 1–10 (2017).
Google Scholar
Rother, D. C., Rodrigues, R. R. & Pizo, M. A. Effects of bamboo stands on seed rain and seed limitation in a rainforest. For. Ecol. Manag. 257, 885–892 (2009).
Srivastava, V., Griess, V.C. & Padalia, H. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol Model 385:35–44 (2018).
Roy, A., Bhattacharya, S., Ramprakash, M. & Kumar, A. S. Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach. Ecol. Model. 329, 77–85 (2016).
Stapleton, C. M. A. The morphology of woody bamboos. LinneanSocietySymposium Series 19 251–268 (Academic Press Limited, 1997).
Larpkern, P., Mor, S. R. & Totland, Q. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165(1), 161–168 (2011).
Google Scholar
Tao, J. P., Shi, X. P. & Wang, Y. J. Effects of different bamboo densities on understory species diversity and trees regeneration in an Abies faxoniana forest, Southwest China. Sci. Res. Essays 7, 660–668 (2012).
Wang, W., Franklin, S. B., Ren, Y. & Ouellette, J. R. Growth of bamboo Fargesiaqinlingensis and regeneration of trees in a mixed hardwood-conifer forest in the Qinling Mountains, China. For. Ecol. Manag. 234(1–3), 107–115 (2006).
Gratzer, G., Rai, P. B. & Glatzel, G. The influence of the bamboo Yushaniamicrophylla on regeneration of Abies densa in central Bhutan. Can. J. For. Res. 29, 1518–1527 (1999).
Takahashi, K., Uemura, S., Suzuki, J. I. & Hara, T. Effect of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecol. Res. 18(6), 767–774 (2003).
Ito, H. & Hino, T. Effects of deer, mice and dwarf bamboo on the emergence, survival and growth of Abieshomolepis (Piceaceae) seedlings. Ecol. Res. 19(2), 217–223 (2004).
Tenzin, K. & Rinzin, A. Impact of Livestock Grazing on the Regeneration of Some Major Species of Plants in Conifer Forest (RNR-RC, 2003).
Darabant, A., Rai, P. B., Tenzin, K., Roder, W. & Gratzer, G. Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory. For. Ecol. Manag. 252(1–3), 73–83 (2007).
Sinha, S. et al. Effect of altitude and climate in shaping the forest compositions of Singalila National Park in Khangchendzonga Landscape, Eastern Himalaya, India. J. Asia-Pac. Biodiver. 11(2), 267–275 (2018).
Zhang, W., Huang, D., Wang, R., Liu, J. & Du, N. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China. PLoS ONE 11(7), e0159995. https://doi.org/10.1371/journal.pone.0159995 (2016).
Google Scholar
Sharma, C. M., Mishra, A. K., Tiwari, O. P., Krishna, R. & Rana, Y. S. Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya. Energy Ecol. Environ. 2(6), 404–417. https://doi.org/10.1007/s40974-017-0067-6(2016) (2017).
Google Scholar
Silveira, M. Ecological aspects of bamboo-dominated forests in southwestern Amazonia: An ethnoscience perspective. Ecotropica 5, 213–216 (1999).
Franklin, D. C. Vegetation phenology and growth of a facultatively deciduous bamboo in a monsoonal climate. Biotropica 37, 343–350 (2005).
Nath, A. N., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Cons. 3, 654–663 (2015).
Venkatesh, M. S., Bhatt, B. P., Kumar, K., Majumdar, B. & Singh, K. Soil properties as influenced by some important edible bamboo species in the North Eastern Himalayan region. Indian J. Bamboo Rattan 4(3), 221–230 (2005).
ICIMOD, WCD, GBPNIHESD, RECAST Kangchenjunga landscape feasibility assessment report. ICIMOD Working Paper 2017/9. Kathmandu: ICIMOD (2017).
Mueller-Dombois, A. & Ellenburg, A. Aims and Methods of Vegetation Ecology 48–50 (John Wiley Sons, 1974).
Polunin, O. & Stainton, A. Flowers of the Himalaya 580 (Oxford University Press, 2001).
Ghosh, D.K. & Mallick, J.K. Flora of darjeeling himalayas and foothills: Angiosperms. Research Circle, Forest Directorate, Government of West Bengal & Bishen Singh Mahendra Pal Singh (2014).
Pradhan, U. C. & Lachungpa, M. L. Sikkim Himalayan Rhododendrons 130 (Primulaceae Books, 1990).
de Bello, F., Leps, J. & Sebastia, M. T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecograph 29, 801–810 (2006).
Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman and Hall, 1990).
Google Scholar
Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
McCullagh, P. & Nelder, J. A. Generalized Linear Models 2nd edn. (Chapman and Hall, 1989).
Google Scholar
Gaira, K. S., Dhar, U. & Belwal, O. K. Potential of herbarium records to sequence phenological pattern: A case study of Aconitum heterophyllum in the Himalaya. Biodiver. Cons. 20, 2201–2210 (2011).
Source: Ecology - nature.com