Vörös, I. Large mammal remains from the Upper Palaeolithic site at Esztergom-Gyurgyalag. Acta Archaeol. Hung. 43, 261–263 (1991).
Jánossy, D. Pleistocene Vertebrate Faunas of Hungary. Journal of Chemical Information and Modeling (Akadémiai Kiadó, 1986).
Kordos, L. A sketch of the vertebrata biostratigraphy of the Hungarian Holocene. Földrajzi Közlemények 101, 144–160 (1978).
Sümegi, P., Rudner, E. & Törőcsik, T. Environmental and chronological reconstruction problems during the Pleistocene/Holocene transition in Hungary (Magyarország pleisztocén végi és kora holocén környezeti változások kronológiai, tér és időbeli rekonstrukciós problémái). In Őskoros Kutatók IV. Összejövetelének Konferenciakötete (ed. Kolozsi, B.) 279–298 (Hajdú-Bihar Megyei Múzeumok Igazgatósága, 2012).
Bösken, J. et al. Investigating the last glacial Gravettian site ‘Ságvár Lyukas Hill’ (Hungary) and its paleoenvironmental and geochronological context using a multi-proxy approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 509, 77–90 (2018).
Google Scholar
Wilczyński, J. et al. Mammoth hunting strategies during the Late Gravettian in Central Europe as determined from case studies of Milovice I (Czech Republic) and Kraków Spadzista (Poland). Quat. Sci. Rev. 223, 105919 (2019).
Google Scholar
Lengyel, G. Reassessing the middle and late upper palaeolithic in Hungary. Acta Archaeol. Carpathica 51, 47–66 (2016).
Béres, S. et al. Zöld cave and the late epigravettian in eastern central Europe. Quat. Int. 587–588, 158–171 (2021).
Google Scholar
Feurdean, A. et al. Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat. Sci. Rev. 45, 111–125 (2012).
Google Scholar
Kuneš, P. et al. Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J. Biogeogr. 35, 2223–2236 (2008).
Google Scholar
Pazonyi, P. Mammalian ecosystem dynamics in the Carpathian Basin during the last 27,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 295–314 (2004).
Google Scholar
Sümegi, P. et al. Climatic fluctuations inferred for the middle and late pleniglacial (MIS 2) based on high-resolution (∼ca. 20 y) preliminary environmental magnetic investigation of the loess section of the Madaras brickyard (Hungary). Cent. Eur. Geol. 55, 329–345 (2012).
Google Scholar
Magyari, E. K. et al. Vegetation and environmental responses to climate forcing during the last glacial maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning. Quat. Sci. Rev. 106, 278–298 (2014).
Google Scholar
Feurdean, A. et al. Climate variability and associated vegetation response throughout central and eastern Europe (CEE) between 60 and 8 ka. Quat. Sci. Rev. 106, 206–224 (2014).
Google Scholar
Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl. Acad. Sci. U. S. A. 112, 14301–14306 (2015).
Google Scholar
Magyari, E. K. et al. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat. Sci. Rev. 35, 116–130 (2012).
Google Scholar
Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).
Google Scholar
Magyari, E. K. et al. Warm Younger Dryas summers and early late glacial spread of temperate deciduous trees in the Pannonian Basin during the last glacial termination (20–9 kyr cal BP). Quat. Sci. Rev. 225, 105980 (2019).
Google Scholar
Sümegi, P., Magyari, E., Dániel, P., Molnár, M. & Törocsik, T. Responses of terrestrial ecosystems to Dansgaard-Oeshger cycles and Heinrich-events: a 28,000-year record of environmental changes from SE Hungary. Quat. Int. 293, 34–50 (2013).
Google Scholar
Hillebrand, J. Paleolithic History (Az őskőkor Története) (Magyar Szemle Társaság, 1934).
Vértes, L., Kretzoi, M. & Herrmann, M. Neuere Forschungen in der Jankovich-Höhle. Folia Archaeol. 9, 3–23 (1957).
Jánossy, D. Preliminary results of the paleontological investigations of a yet unknown rock shelter in the Bükk Mountains (A Bükk-hegység eddig ismeretlen kőfülkéjében végzett őslénytani ásatás előzetes eredménye, Répáshuta, Rejtek). Karszt- és Barlkut. Tájékoztató 72 (1963).
Jánossy, D. & Kordos, L. Pleistocene-Holocene Mollusc and Vertebrate Fauna of two caves in Hungary. Ann. Hist. Musei Natl. Hungarici 68, 5–29 (1976).
Vértes, L. Paleolithic and Mesolithic Remains in Hungary (Az Őskőkor és az Átmeneti Kőkor Emlékei Magyarországon) (Akadémiai Kiadó, 1965).
Stieber, J. Oberpleistozäne Vegetationsgeschichte Ungarns im Spiegel anthrakotomischer Ergebnisse (bis 1957) (A magyarországi felsőpleisztocén vegetáció-története az anthrakotómiai eredmények (1957-ig) tükrében). Földtani Közlöny 97, 305–317 (1967).
Jánossy, D. Vorläufige Ergebnisse der Ausgrabungen in der Felsnische Rejtek I. (Bükkgebirge, Gem. Répáshuta). Karszt- és Barlangkutatás 3, 49–58 (1961).
Kovács, J. Radiocarbon chronology of late Pleistocene large mammal faunas from the Pannonian basin (Hungary). Bull. Geosci. 87, 13–19 (2012).
Google Scholar
Willis, K. J., Braun, M., Sümegi, P. & Tóth, A. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78, 740–750 (1997).
Google Scholar
Magyari, E. Holocene biogeography of Fagus sylvatica L. and Carpinus betulus L. in the Carpathian-Alpine Region. Folia Hist. Musei Matra. 26, 15–35 (2002).
Magri, D. Persistence of tree taxa in Europe and quaternary climate changes. Quat. Int. 219, 145–151 (2010).
Google Scholar
Füköh, L. Biostratigraphical investigation of the mollusc fauna of Rejtek I. rock-niche and Petényi Cave: Bükk Mountains, Hungary (Rejtek kőfülke és a Petényi-barlang (Bükk-hegység) Mollusca faunájának malakosztratigráfiai vizsgálata). Folia Hist. Musei Matra. 12, 9–13 (1987).
Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).
Google Scholar
Bradshaw, C. J. A., Cooper, A., Turney, C. S. M. & Brook, B. W. Robust estimates of extinction time in the geological record. Quat. Sci. Rev. 33, 14–19 (2012).
Google Scholar
Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
Google Scholar
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Google Scholar
Katona, L., Kovács, J., Kordos, L., Szappanos, B. & Linkai, I. The Csajág mammoths (Mammuthus primigenius): late Pleniglacial finds from Hungary and their chronological significance. Quat. Int. 255, 130–138 (2012).
Google Scholar
Buczkó, K. et al. Responses of diatoms to the Younger Dryas climatic reversal in a South Carpathian mountain lake (Romania). J. Paleolimnol. 48, 417–431 (2012).
Google Scholar
Tóth, M. et al. A chironomid-based reconstruction of late glacial summer temperatures in the southern Carpathians (Romania). Quat. Res. 77, 122–131 (2012).
Google Scholar
Sümegi, P. et al. Radiocarbon-dated paleoenvironmental changes on a lake and peat sediment sequence from the central Great Hungarian Plain (Central Europe) during the last 25,000 years. Radiocarbon 53, 85–97 (2011).
Google Scholar
Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).
Google Scholar
Feurdean, A. et al. Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 17, 1213–1230 (2020).
Google Scholar
Sümegi, P. et al. Radiocarbon dated complex paleoecological and geoarcheological analyses at the Bodrogkeresztúr—Henye Gravettian site (Ne Hungary). Archeometriai Műhely 13, 31–41 (2016).
Herrmann, M., Jánossy, D., Stieber, J. & Vértes, L. Ausgrabungen in der Petényi- und Pesko-Höhle (Bükk-Gebirge). Folia Archaeol. 8, 3–22 (1956).
Royer, A. How complex is the evolution of small mammal communities during the Late Glacial in southwest France?. Quat. Int. 414, 23–33 (2016).
Google Scholar
Crégut-Bonnoure, E. et al. The karst of the Vaucluse, an exceptional record for the last glacial maximum (LGM) and the Late-glacial period palaeoenvironment of southeastern France. Quat. Int. 339–340, 41–61 (2014).
Google Scholar
Cuenca-Bescós, G., Straus, L. G., González Morales, M. R. & García Pimienta, J. C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria, Spain). J. Archaeol. Sci. 36, 947–955 (2009).
Google Scholar
Kovalchuk, O. et al. Living in a time of change: late Pleistocene/Holocene transitional vertebrate fauna of Grot Skeliastyi (Crimea, Ukraine). Hist. Biol. https://doi.org/10.1080/08912963.2020.1769094 (2020).
Google Scholar
Puzachenko, A. Y. & Markova, A. K. Evolution of mammal species composition and species richness during the Late Pleistocene—Holocene transition in Europe: a general view at the regional scale. Quat. Int. 530–531, 88–106 (2019).
Google Scholar
Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in Eastern Central Europe. In Relict Species: Phylogeography and Conservation Biology (eds Habel, J. C. & Assmann, T.) 57–87 (Springer Berlin Heidelberg, 2010).
Google Scholar
Magyari, E. K. et al. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37, 915–935 (2010).
Google Scholar
Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).
Google Scholar
Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. 94, 328–352 (2019).
Google Scholar
Lister, A. M. & Sher, A. V. Ice cores and mammoth extinction. Nature 378, 23–24 (1995).
Google Scholar
Owen-Smith, N. R. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1988).
Google Scholar
Guthrie, R. D. Frozen Fauna of the Mammoth Steppe: The story of Blue Babe (The University of Chicago Press, 1990).
Google Scholar
Huntley, B. et al. Millennial climatic fluctuations are key to the structure of last glacial ecosystems. PLoS One 8, e61963 (2013).
Google Scholar
Vörös, I. Large mammalian faunal changes during the Late Upper Pleistocene and Early Holocene times in the Carpathian Basin. In Pleistocene Environment in Hungary (ed. Pécsi, M.) 81–102 (Geographical Research Institute HAS, 1987).
Németh, A. et al. Holocene mammal extinctions in the Carpathian Basin: a review. Mamm. Rev. 47, 38–52 (2017).
Google Scholar
Marchant, R., Brewer, S., Webb, T. I. & Turvey, S. T. Holocenedeforestation: a history of human–environmental interactions, climate change, and extinction. In Holocene Extinctions (ed. Turvey, S. T.) 213–234 (Oxford University Press, 2009).
Google Scholar
Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).
Google Scholar
Herre, W. Rangifer tarandus—Ren, Rentier. In Handbuch der Saugetiere Europas 2/II Paarhufer—Artiodactyla (eds Niethammer, J. & Krapp, F.) 198–216 (Aula Publisher, 1986).
Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N. & Liljegren, R. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41, 298–306 (2014).
Google Scholar
Lengyel, G. & Wilczyński, J. (2018) The Gravettian and the Epigravettian chronology in eastern central Europe: a comment on Bösken et al. (2017). Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 265–269 (2018).
Google Scholar
Sommer, R. S. Late Pleistocene and Holocene history of mammals in Europe. Handb. Mamm. Eur. https://doi.org/10.1007/978-3-319-65038-8_3-1 (2020).
Google Scholar
Palkopoulou, E. et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B Biol. Sci. 280, 20131910 (2013).
Google Scholar
Spötl, C., Reimer, P. J. & Göhlich, U. B. Mammoths inside the Alps during the last glacial period: radiocarbon constraints from Austria and palaeoenvironmental implications. Quat. Sci. Rev. 190, 11–19 (2018).
Google Scholar
Sümegi, P. Loess and Upper Paleolithic Environment in Hungary: An Introduction to the Environmental History of Hungary (Aurea, 2005).
Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. U. S. A. 114, E10632–E10638 (2017).
Google Scholar
Haynes, G. Extinctions in North America’s late glacial landscapes. Quat. Int. 285, 89–98 (2013).
Google Scholar
Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).
Google Scholar
Lengyel, G. et al. The Epigravettian chronology and the human population of eastern Central Europe during MIS2. Quat. Sci. Rev. 271, 107187 (2021).
Google Scholar
Sajó, I. E. et al. Core-shell processing of natural pigment: upper Palaeolithic red ochre from Lovas, Hungary. PLoS One 10, 1–18 (2015).
Google Scholar
Horváth, T. & Ilon, G. Mezőlak-Szélmező-peatbog: an unusual prehistoric site (Mezőlak-szélmező-tőzegtelep: egy nem hétköznapi őskori lelőhely). Archeometriai Műhely 14, 143–183 (2017).
Zalai-Gaál, I. Possibilites of the social-archaeological studies of the Neolithic. Antaeus 27, 449–471 (2004).
Reade, H. et al. Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic. Archaeol. Anthropol. Sci. https://doi.org/10.1007/s12520-020-01254-4 (2021).
Google Scholar
Łanczont, M. et al. Late Glacial environment and human settlement of the Central Western Carpathians: a case study of the Nowa Biała 1 open-air site (Podhale Region, southern Poland). Quat. Int. 512, 113–132 (2019).
Google Scholar
Mészáros, G. & Vértes, L. A paint mine from the early Upper Palaeolithic age near Lovas (Hungary, county Veszprém). Acta Archaeol. Acad. Sci. Hung. 5, 5–34 (1955).
Pathou-Mathis, M. Nouvelle analyse du metérial osseux du site de Lovas. Praehistoria 3, 161–175 (2002).
Sobkowiak-Tabaka, I. & Diachenko, A. Approaching daily life at Late Palaeolithic camps: the case of Lubrza 10, Western Poland. Prahistorische Z. 95, 311–333 (2020).
Google Scholar
Molnár, M. et al. EnvironMICADAS : a mini 14C AMS with enhanced gas ion source. Radiocarbon 55, 338–344 (2013).
Google Scholar
Major, I. et al. Assessment and development of bone preparation for radiocarbon dating at HEKAL. Radiocarbon 61, 1551–1561 (2019).
Google Scholar
Rinyu, L. et al. Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 270–275 (2013).
Google Scholar
Molnár, M. et al. Status report of the new AMS 14 C sample preparation lab of the Hertelendi laboratory of environmental studies (Debrecen, Hungary). Radiocarbon 55, 665–676 (2013).
Google Scholar
Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
Google Scholar
Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nat. Ecol. Evol. 3, 31–38 (2019).
Google Scholar
Davis, B. A. S. et al. The European modern pollen database (EMPD) project. Veg. Hist. Archaeobot. 22, 521–530 (2013).
Google Scholar
ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270, 485–502 (1993).
Google Scholar
Birks, H. J. B., Line, J. M., Juggings, S., Stevenson, A. C. & ter Braak, C. J. F. Diatoms and pH reconstruction. Philos. Trans. R. Soc. B 327, 263–278 (1990).
Google Scholar
Prentice, I. C. Multidimensional scaling as a research tool in quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31, 71–104 (1980).
Google Scholar
van der Voet, H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 25, 313–323 (1994).
Google Scholar
Birks, H. J. B. Quantitative palaeoenvironmental reconstructions from holocene biological data. Glob. Change Holocene https://doi.org/10.4324/9780203785027 (2003).
Google Scholar
Rioja, J. S. Analysis of Quaternary Science Data, R package version (0.8-5). (2012).
Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).
Google Scholar
Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).
Google Scholar
Birks, H. J. B. Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 292–304 (2012).
Google Scholar
Kordos, L. Climatostratigraphy of Upper Pleistocene vertebrates and the conditions of loess formation in Hungary. GeoJournal 15, 163–166 (1987).
Google Scholar
Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).
Google Scholar
Tarasov, P. E. et al. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J. Biogeogr. 25, 1029–1053 (1998).
Google Scholar
Allen, J. R. M., Watts, W. A. & Huntley, B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quat. Int. 73–74, 91–110 (2000).
Google Scholar
Source: Ecology - nature.com