in

Mammal extinction facilitated biome shift and human population change during the last glacial termination in East-Central Europe

  • Vörös, I. Large mammal remains from the Upper Palaeolithic site at Esztergom-Gyurgyalag. Acta Archaeol. Hung. 43, 261–263 (1991).

    Google Scholar 

  • Jánossy, D. Pleistocene Vertebrate Faunas of Hungary. Journal of Chemical Information and Modeling (Akadémiai Kiadó, 1986).

    Google Scholar 

  • Kordos, L. A sketch of the vertebrata biostratigraphy of the Hungarian Holocene. Földrajzi Közlemények 101, 144–160 (1978).

    Google Scholar 

  • Sümegi, P., Rudner, E. & Törőcsik, T. Environmental and chronological reconstruction problems during the Pleistocene/Holocene transition in Hungary (Magyarország pleisztocén végi és kora holocén környezeti változások kronológiai, tér és időbeli rekonstrukciós problémái). In Őskoros Kutatók IV. Összejövetelének Konferenciakötete (ed. Kolozsi, B.) 279–298 (Hajdú-Bihar Megyei Múzeumok Igazgatósága, 2012).

    Google Scholar 

  • Bösken, J. et al. Investigating the last glacial Gravettian site ‘Ságvár Lyukas Hill’ (Hungary) and its paleoenvironmental and geochronological context using a multi-proxy approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 509, 77–90 (2018).

    Article 

    Google Scholar 

  • Wilczyński, J. et al. Mammoth hunting strategies during the Late Gravettian in Central Europe as determined from case studies of Milovice I (Czech Republic) and Kraków Spadzista (Poland). Quat. Sci. Rev. 223, 105919 (2019).

    Article 

    Google Scholar 

  • Lengyel, G. Reassessing the middle and late upper palaeolithic in Hungary. Acta Archaeol. Carpathica 51, 47–66 (2016).

    Google Scholar 

  • Béres, S. et al. Zöld cave and the late epigravettian in eastern central Europe. Quat. Int. 587–588, 158–171 (2021).

    Article 

    Google Scholar 

  • Feurdean, A. et al. Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat. Sci. Rev. 45, 111–125 (2012).

    Article 
    ADS 

    Google Scholar 

  • Kuneš, P. et al. Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J. Biogeogr. 35, 2223–2236 (2008).

    Article 

    Google Scholar 

  • Pazonyi, P. Mammalian ecosystem dynamics in the Carpathian Basin during the last 27,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 295–314 (2004).

    Article 

    Google Scholar 

  • Sümegi, P. et al. Climatic fluctuations inferred for the middle and late pleniglacial (MIS 2) based on high-resolution (ca. 20 y) preliminary environmental magnetic investigation of the loess section of the Madaras brickyard (Hungary). Cent. Eur. Geol. 55, 329–345 (2012).

    Article 

    Google Scholar 

  • Magyari, E. K. et al. Vegetation and environmental responses to climate forcing during the last glacial maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning. Quat. Sci. Rev. 106, 278–298 (2014).

    Article 
    ADS 

    Google Scholar 

  • Feurdean, A. et al. Climate variability and associated vegetation response throughout central and eastern Europe (CEE) between 60 and 8 ka. Quat. Sci. Rev. 106, 206–224 (2014).

    Article 
    ADS 

    Google Scholar 

  • Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl. Acad. Sci. U. S. A. 112, 14301–14306 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Magyari, E. K. et al. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat. Sci. Rev. 35, 116–130 (2012).

    Article 
    ADS 

    Google Scholar 

  • Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).

    Article 
    ADS 

    Google Scholar 

  • Magyari, E. K. et al. Warm Younger Dryas summers and early late glacial spread of temperate deciduous trees in the Pannonian Basin during the last glacial termination (20–9 kyr cal BP). Quat. Sci. Rev. 225, 105980 (2019).

    Article 

    Google Scholar 

  • Sümegi, P., Magyari, E., Dániel, P., Molnár, M. & Törocsik, T. Responses of terrestrial ecosystems to Dansgaard-Oeshger cycles and Heinrich-events: a 28,000-year record of environmental changes from SE Hungary. Quat. Int. 293, 34–50 (2013).

    Article 

    Google Scholar 

  • Hillebrand, J. Paleolithic History (Az őskőkor Története) (Magyar Szemle Társaság, 1934).

    Google Scholar 

  • Vértes, L., Kretzoi, M. & Herrmann, M. Neuere Forschungen in der Jankovich-Höhle. Folia Archaeol. 9, 3–23 (1957).

    Google Scholar 

  • Jánossy, D. Preliminary results of the paleontological investigations of a yet unknown rock shelter in the Bükk Mountains (A Bükk-hegység eddig ismeretlen kőfülkéjében végzett őslénytani ásatás előzetes eredménye, Répáshuta, Rejtek). Karszt- és Barlkut. Tájékoztató 72 (1963).

  • Jánossy, D. & Kordos, L. Pleistocene-Holocene Mollusc and Vertebrate Fauna of two caves in Hungary. Ann. Hist. Musei Natl. Hungarici 68, 5–29 (1976).

    Google Scholar 

  • Vértes, L. Paleolithic and Mesolithic Remains in Hungary (Az Őskőkor és az Átmeneti Kőkor Emlékei Magyarországon) (Akadémiai Kiadó, 1965).

    Google Scholar 

  • Stieber, J. Oberpleistozäne Vegetationsgeschichte Ungarns im Spiegel anthrakotomischer Ergebnisse (bis 1957) (A magyarországi felsőpleisztocén vegetáció-története az anthrakotómiai eredmények (1957-ig) tükrében). Földtani Közlöny 97, 305–317 (1967).

    Google Scholar 

  • Jánossy, D. Vorläufige Ergebnisse der Ausgrabungen in der Felsnische Rejtek I. (Bükkgebirge, Gem. Répáshuta). Karszt- és Barlangkutatás 3, 49–58 (1961).

    Google Scholar 

  • Kovács, J. Radiocarbon chronology of late Pleistocene large mammal faunas from the Pannonian basin (Hungary). Bull. Geosci. 87, 13–19 (2012).

    Article 

    Google Scholar 

  • Willis, K. J., Braun, M., Sümegi, P. & Tóth, A. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78, 740–750 (1997).

    Article 

    Google Scholar 

  • Magyari, E. Holocene biogeography of Fagus sylvatica L. and Carpinus betulus L. in the Carpathian-Alpine Region. Folia Hist. Musei Matra. 26, 15–35 (2002).

    Google Scholar 

  • Magri, D. Persistence of tree taxa in Europe and quaternary climate changes. Quat. Int. 219, 145–151 (2010).

    Article 

    Google Scholar 

  • Füköh, L. Biostratigraphical investigation of the mollusc fauna of Rejtek I. rock-niche and Petényi Cave: Bükk Mountains, Hungary (Rejtek kőfülke és a Petényi-barlang (Bükk-hegység) Mollusca faunájának malakosztratigráfiai vizsgálata). Folia Hist. Musei Matra. 12, 9–13 (1987).

    Google Scholar 

  • Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bradshaw, C. J. A., Cooper, A., Turney, C. S. M. & Brook, B. W. Robust estimates of extinction time in the geological record. Quat. Sci. Rev. 33, 14–19 (2012).

    Article 
    ADS 

    Google Scholar 

  • Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article 
    ADS 

    Google Scholar 

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    CAS 
    Article 

    Google Scholar 

  • Katona, L., Kovács, J., Kordos, L., Szappanos, B. & Linkai, I. The Csajág mammoths (Mammuthus primigenius): late Pleniglacial finds from Hungary and their chronological significance. Quat. Int. 255, 130–138 (2012).

    Article 

    Google Scholar 

  • Buczkó, K. et al. Responses of diatoms to the Younger Dryas climatic reversal in a South Carpathian mountain lake (Romania). J. Paleolimnol. 48, 417–431 (2012).

    Article 
    ADS 

    Google Scholar 

  • Tóth, M. et al. A chironomid-based reconstruction of late glacial summer temperatures in the southern Carpathians (Romania). Quat. Res. 77, 122–131 (2012).

    Article 
    CAS 

    Google Scholar 

  • Sümegi, P. et al. Radiocarbon-dated paleoenvironmental changes on a lake and peat sediment sequence from the central Great Hungarian Plain (Central Europe) during the last 25,000 years. Radiocarbon 53, 85–97 (2011).

    Article 

    Google Scholar 

  • Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Feurdean, A. et al. Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 17, 1213–1230 (2020).

    Article 
    ADS 

    Google Scholar 

  • Sümegi, P. et al. Radiocarbon dated complex paleoecological and geoarcheological analyses at the Bodrogkeresztúr—Henye Gravettian site (Ne Hungary). Archeometriai Műhely 13, 31–41 (2016).

    Google Scholar 

  • Herrmann, M., Jánossy, D., Stieber, J. & Vértes, L. Ausgrabungen in der Petényi- und Pesko-Höhle (Bükk-Gebirge). Folia Archaeol. 8, 3–22 (1956).

    Google Scholar 

  • Royer, A. How complex is the evolution of small mammal communities during the Late Glacial in southwest France?. Quat. Int. 414, 23–33 (2016).

    Article 

    Google Scholar 

  • Crégut-Bonnoure, E. et al. The karst of the Vaucluse, an exceptional record for the last glacial maximum (LGM) and the Late-glacial period palaeoenvironment of southeastern France. Quat. Int. 339–340, 41–61 (2014).

    Article 

    Google Scholar 

  • Cuenca-Bescós, G., Straus, L. G., González Morales, M. R. & García Pimienta, J. C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria, Spain). J. Archaeol. Sci. 36, 947–955 (2009).

    Article 

    Google Scholar 

  • Kovalchuk, O. et al. Living in a time of change: late Pleistocene/Holocene transitional vertebrate fauna of Grot Skeliastyi (Crimea, Ukraine). Hist. Biol. https://doi.org/10.1080/08912963.2020.1769094 (2020).

    Article 

    Google Scholar 

  • Puzachenko, A. Y. & Markova, A. K. Evolution of mammal species composition and species richness during the Late Pleistocene—Holocene transition in Europe: a general view at the regional scale. Quat. Int. 530–531, 88–106 (2019).

    Article 

    Google Scholar 

  • Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in Eastern Central Europe. In Relict Species: Phylogeography and Conservation Biology (eds Habel, J. C. & Assmann, T.) 57–87 (Springer Berlin Heidelberg, 2010).

    Chapter 

    Google Scholar 

  • Magyari, E. K. et al. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37, 915–935 (2010).

    Article 

    Google Scholar 

  • Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).

    Article 

    Google Scholar 

  • Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. 94, 328–352 (2019).

    Article 

    Google Scholar 

  • Lister, A. M. & Sher, A. V. Ice cores and mammoth extinction. Nature 378, 23–24 (1995).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Owen-Smith, N. R. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1988).

    Book 

    Google Scholar 

  • Guthrie, R. D. Frozen Fauna of the Mammoth Steppe: The story of Blue Babe (The University of Chicago Press, 1990).

    Book 

    Google Scholar 

  • Huntley, B. et al. Millennial climatic fluctuations are key to the structure of last glacial ecosystems. PLoS One 8, e61963 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Vörös, I. Large mammalian faunal changes during the Late Upper Pleistocene and Early Holocene times in the Carpathian Basin. In Pleistocene Environment in Hungary (ed. Pécsi, M.) 81–102 (Geographical Research Institute HAS, 1987).

    Google Scholar 

  • Németh, A. et al. Holocene mammal extinctions in the Carpathian Basin: a review. Mamm. Rev. 47, 38–52 (2017).

    Article 

    Google Scholar 

  • Marchant, R., Brewer, S., Webb, T. I. & Turvey, S. T. Holocenedeforestation: a history of human–environmental interactions, climate change, and extinction. In Holocene Extinctions (ed. Turvey, S. T.) 213–234 (Oxford University Press, 2009).

    Chapter 

    Google Scholar 

  • Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Herre, W. Rangifer tarandus—Ren, Rentier. In Handbuch der Saugetiere Europas 2/II Paarhufer—Artiodactyla (eds Niethammer, J. & Krapp, F.) 198–216 (Aula Publisher, 1986).

    Google Scholar 

  • Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N. & Liljegren, R. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41, 298–306 (2014).

    Article 

    Google Scholar 

  • Lengyel, G. & Wilczyński, J. (2018) The Gravettian and the Epigravettian chronology in eastern central Europe: a comment on Bösken et al. (2017). Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 265–269 (2018).

    Article 

    Google Scholar 

  • Sommer, R. S. Late Pleistocene and Holocene history of mammals in Europe. Handb. Mamm. Eur. https://doi.org/10.1007/978-3-319-65038-8_3-1 (2020).

    Article 

    Google Scholar 

  • Palkopoulou, E. et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B Biol. Sci. 280, 20131910 (2013).

    Article 

    Google Scholar 

  • Spötl, C., Reimer, P. J. & Göhlich, U. B. Mammoths inside the Alps during the last glacial period: radiocarbon constraints from Austria and palaeoenvironmental implications. Quat. Sci. Rev. 190, 11–19 (2018).

    Article 
    ADS 

    Google Scholar 

  • Sümegi, P. Loess and Upper Paleolithic Environment in Hungary: An Introduction to the Environmental History of Hungary (Aurea, 2005).

    Google Scholar 

  • Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. U. S. A. 114, E10632–E10638 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haynes, G. Extinctions in North America’s late glacial landscapes. Quat. Int. 285, 89–98 (2013).

    Article 

    Google Scholar 

  • Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Lengyel, G. et al. The Epigravettian chronology and the human population of eastern Central Europe during MIS2. Quat. Sci. Rev. 271, 107187 (2021).

    Article 

    Google Scholar 

  • Sajó, I. E. et al. Core-shell processing of natural pigment: upper Palaeolithic red ochre from Lovas, Hungary. PLoS One 10, 1–18 (2015).

    Article 
    CAS 

    Google Scholar 

  • Horváth, T. & Ilon, G. Mezőlak-Szélmező-peatbog: an unusual prehistoric site (Mezőlak-szélmező-tőzegtelep: egy nem hétköznapi őskori lelőhely). Archeometriai Műhely 14, 143–183 (2017).

    Google Scholar 

  • Zalai-Gaál, I. Possibilites of the social-archaeological studies of the Neolithic. Antaeus 27, 449–471 (2004).

    Google Scholar 

  • Reade, H. et al. Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic. Archaeol. Anthropol. Sci. https://doi.org/10.1007/s12520-020-01254-4 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Łanczont, M. et al. Late Glacial environment and human settlement of the Central Western Carpathians: a case study of the Nowa Biała 1 open-air site (Podhale Region, southern Poland). Quat. Int. 512, 113–132 (2019).

    Article 

    Google Scholar 

  • Mészáros, G. & Vértes, L. A paint mine from the early Upper Palaeolithic age near Lovas (Hungary, county Veszprém). Acta Archaeol. Acad. Sci. Hung. 5, 5–34 (1955).

    Google Scholar 

  • Pathou-Mathis, M. Nouvelle analyse du metérial osseux du site de Lovas. Praehistoria 3, 161–175 (2002).

    Google Scholar 

  • Sobkowiak-Tabaka, I. & Diachenko, A. Approaching daily life at Late Palaeolithic camps: the case of Lubrza 10, Western Poland. Prahistorische Z. 95, 311–333 (2020).

    Article 

    Google Scholar 

  • Molnár, M. et al. EnvironMICADAS : a mini 14C AMS with enhanced gas ion source. Radiocarbon 55, 338–344 (2013).

    Article 

    Google Scholar 

  • Major, I. et al. Assessment and development of bone preparation for radiocarbon dating at HEKAL. Radiocarbon 61, 1551–1561 (2019).

    CAS 
    Article 

    Google Scholar 

  • Rinyu, L. et al. Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 270–275 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Molnár, M. et al. Status report of the new AMS 14 C sample preparation lab of the Hertelendi laboratory of environmental studies (Debrecen, Hungary). Radiocarbon 55, 665–676 (2013).

    Article 

    Google Scholar 

  • Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nat. Ecol. Evol. 3, 31–38 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Davis, B. A. S. et al. The European modern pollen database (EMPD) project. Veg. Hist. Archaeobot. 22, 521–530 (2013).

    Article 

    Google Scholar 

  • ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270, 485–502 (1993).

    Article 

    Google Scholar 

  • Birks, H. J. B., Line, J. M., Juggings, S., Stevenson, A. C. & ter Braak, C. J. F. Diatoms and pH reconstruction. Philos. Trans. R. Soc. B 327, 263–278 (1990).

    ADS 

    Google Scholar 

  • Prentice, I. C. Multidimensional scaling as a research tool in quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31, 71–104 (1980).

    Article 

    Google Scholar 

  • van der Voet, H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 25, 313–323 (1994).

    Article 

    Google Scholar 

  • Birks, H. J. B. Quantitative palaeoenvironmental reconstructions from holocene biological data. Glob. Change Holocene https://doi.org/10.4324/9780203785027 (2003).

    Article 

    Google Scholar 

  • Rioja, J. S. Analysis of Quaternary Science Data, R package version (0.8-5). (2012).

  • Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).

    Article 
    ADS 

    Google Scholar 

  • Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).

    Article 

    Google Scholar 

  • Birks, H. J. B. Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 292–304 (2012).

    Article 

    Google Scholar 

  • Kordos, L. Climatostratigraphy of Upper Pleistocene vertebrates and the conditions of loess formation in Hungary. GeoJournal 15, 163–166 (1987).

    Article 

    Google Scholar 

  • Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).

    Article 

    Google Scholar 

  • Tarasov, P. E. et al. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J. Biogeogr. 25, 1029–1053 (1998).

    Article 

    Google Scholar 

  • Allen, J. R. M., Watts, W. A. & Huntley, B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quat. Int. 73–74, 91–110 (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Groundwater extraction poses extreme threat to Doñana World Heritage Site

    Using excess heat to improve electrolyzers and fuel cells