Tomlinson, P. B. The Botany of Mangroves. (Cambridge University Press, 1994).
Carrasquilla-Henao, M. & Juanes, F. Mangroves enhance local fisheries catches: A global meta-analysis. Fish Fish. 18, 79–93 (2017).
del Valle, A., Eriksson, M., Ishizawa, O. A. & Miranda, J. J. Mangroves protect coastal economic activity from hurricanes. Proc. Natl. Acad. Sci. U.S.A. 117, 265–270 (2020).
Google Scholar
Zhang, K. et al. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 102–103, 11–23 (2012).
Google Scholar
Menendez, P., Losada, I. J., Torres-Ortega, S., Narayan, S. & Beck, M. W. The global flood protection benefits of mangroves. Sci. Rep. 10, 1–11 (2020).
Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).
Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).
Bryan-Brown, D. N. et al. Global trends in mangrove forest fragmentation. Sci. Rep. https://doi.org/10.1038/s41598-020-63880-1 (2020).
Google Scholar
Duke, N. C. et al. A world without mangroves ?. Science 317, 41–43 (2007).
Google Scholar
Friess, D. A. et al. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).
Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).
Google Scholar
Reynolds, L. K., McGlathery, K. J. & Waycott, M. Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7, 1–7 (2012).
Lowenfeld, R. & Klekowski, E. J. Mangrove genetics. I. Mating system and mutation rates of rhizophora mangle in Florida and San Salvador Island, Bahamas. Int. J. Plant Sci. 153, 394–399 (1992).
Kennedy, J. P., Sammy, J. M., Rowntree, J. K. & Preziosi, R. F. Mating system variation in neotropical black mangrove, Avicennia germinans, at three spatial scales towards an expanding northern distributional limit. Estuarine Coastal Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106754 (2020).
Google Scholar
Van Der Stocken, T. et al. Impact of landscape structure on propagule dispersal in mangrove forests. Mar. Ecol. Prog. Ser. 524, 95–106 (2015).
Google Scholar
Hamilton, J. F., Osman, R. W. & Feller, I. C. Modeling local effects on propagule movement and the potential expansion of mangroves and associated fauna: Testing in a sub-tropical lagoon. Hydrobiologia 803, 173–187 (2017).
Binks, R. M. et al. Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Divers. Distrib. 25, 298–309 (2019).
Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108 (2017).
Cisneros-de la Cruz, D. J. et al. Short-distance barriers affect genetic variability of Rhizophora mangle in the Yucatan Peninsula. Ecol. Evolut. https://doi.org/10.1002/ece3.4575 (2018).
Google Scholar
Kennedy, J. P. et al. Postglacial expansion pathways of red mangrove Rhizophora mangle, in the Caribbean Basin and Florida. Am. J. Bot. 103, 260–276 (2016).
Google Scholar
Wee, A. K. S. et al. Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba. J. Sm Indo-West Pac. For. 8, 1–21 (2017).
Iuit, L. R. C. et al. Genetic structure and connectivity of the red mangrove at different geographic scales through a complex transverse hydrological system from freshwater to marine ecosystems. Diversity 12, 113 (2020).
Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 803, 189–207 (2017).
Triest, L. et al. Channel network structure determines genetic connectivity of landward–seaward Avicennia marina populations in a tropical bay. Ecol. Evol. 10, 12059–12075 (2020).
Google Scholar
Canty, S. W. J., Fox, G., Rowntree, J. K. & Preziosi, R. F. Genetic structure of a remnant Acropora cervicornis population. Sci. Rep. 11, 1–9 (2021).
Kettenring, K. M., Mossman, B. N., Downard, R. & Mock, K. E. Fine-scale genetic diversity and landscape-scale genetic structuring in three foundational bulrush species: Implications for wetland revegetation. Restor. Ecol. 27, 408–420 (2019).
Mijangos, J. L., Pacioni, C., Spencer, P. B. S. & Craig, M. D. Contribution of genetics to ecological restoration. Mol. Ecol. 24, 22–37 (2015).
Google Scholar
Ross, M. S. et al. Early post-hurricane stand development in Fringe mangrove forests of contrasting productivity. Plant Ecol. 185, 283–297 (2006).
Kennedy, J. P. et al. Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit. Mol. Ecol. https://doi.org/10.1111/mec.15513 (2020).
Google Scholar
NOAA. Historical Hurricane Tracks. https://coast.noaa.gov/hurricanes/ (National Hurricane Center | National Oceanic and Atmospheric Administration).
Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).
Cannicci, S. et al. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquat. Bot. 89, 186–200 (2008).
Krauss, K. W. et al. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 89, 105–127 (2008).
Clarke, P. J. Effects of experimental canopy gaps on mangrove recruitment: Lack of habitat partitioning may explain stand dominance. J. Ecol. 92, 203–213 (2004).
Sandoval-Castro, E. et al. Post-glacial expansion and population genetic divergence of Mangrove species Avicennia germinans (L.) stearn and Rhizophora mangle L. along the Mexican coast. PLoS ONE 9, 113 (2014).
Rabinowitz, D. Dispersal properties of Mangrove propagules. Biotropica 10, 47–57 (1978).
Chollett, I. et al. A case for redefining the boundaries of the Mesoamerican reef ecoregion. Coral Reefs https://doi.org/10.1007/s00338-017-1595-4 (2017).
Google Scholar
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10 (2015).
Jump, A. S. & Peñuelas, J. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc. Natl. Acad. Sci. U.S.A. 103, 8096–8100 (2006).
Google Scholar
Jalonen, R., Hong, L. T., Lee, S. L., Loo, J. & Snook, L. Integrating genetic factors into management of tropical Asian production forests: A review of current knowledge. For. Ecol. Manag. 315, 191–201 (2014).
Pacioni, C., Trocini, S., Wayne, A. F., Rafferty, C. & Page, M. Integrating population genetics in an adaptive management framework to inform management strategies. Biodivers. Conserv. 29, 947–966 (2020).
Van der Stocken, T. et al. A general framework for propagule dispersal in mangroves. Biol. Rev. 94, 1547–1575 (2019).
Google Scholar
Bologna, P. A. X. et al. Lingering impacts of Hurricane Hugo on Rhizophora mangle (Red Mangrove) population genetics on St. John, USVI. Diversity 11, 1–14 (2019).
Cerón-Souza, I., Bermingham, E., McMillan, W. O. & Jones, F. A. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evol. Biol. 12, 205 (2012).
Google Scholar
Núñez-Farfán, J. et al. Genetic divergence among Mexican populations of red mangrove (Rhizophora mangle): Geographic and historic effects. Evol. Ecol. Res. 4, 1049–1064 (2002).
Coleman, M. A. et al. Restore or redefine: Future trajectories for restoration. Front. Mar. Sci. 7, 1–12 (2020).
Breed, M. F. et al. Priority actions to improve provenance decision-making. Bioscience 68, 510–516 (2018).
Breed, M. F. et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20, 615–628 (2019).
Google Scholar
Kandil, F. E., Grace, M. H., Seigler, D. S. & Cheeseman, J. M. Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees 18, 518–528 (2004).
Google Scholar
Sahu, S. K., Thangaraj, M. & Kathiresan, K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012, 1–6 (2012).
Wang, S., Meyer, E., Mckay, J. K. & Matz, M. V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).
Google Scholar
Guo, Y. et al. An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genomics 15, 1–13 (2014).
Google Scholar
Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).
Google Scholar
Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).
Google Scholar
Marandel, F. et al. Estimating effective population size using RADseq: Effects of SNP selection and sample size. Ecol. Evol. 10, 1929–1937 (2019).
Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr : An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
Google Scholar
Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
Google Scholar
Garnier-Géré, P. & Chikhi, L. Population subdivision, Hardy-Weinberg equilibrium and the Wahlund effect. Els. https://doi.org/10.1002/9780470015902.a0005446.pub3 (2013).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
Google Scholar
Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Pritchard, J. K. & Wen, W. Documentation for Structure Software: Version 2.2. http://pritch.bsd.uchicago.edu (2002).
Vähä, J. P., Erkinaro, J., Niemelä, E. & Primmer, C. R. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16, 2638–2654 (2007).
Google Scholar
Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).
Google Scholar
Meirmans, P. G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).
Google Scholar
Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. Bioinformatics 28, 2537–2539 (2012).
Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573 (1999).
Google Scholar
Peakall, R., Ruibal, M. & Lindenmayer, D. B. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57, 1182–1195 (2003).
Google Scholar
Source: Ecology - nature.com