in

Mangrove diversity is more than fringe deep

  • 1.

    Tomlinson, P. B. The Botany of Mangroves. (Cambridge University Press, 1994).

  • 2.

    Carrasquilla-Henao, M. & Juanes, F. Mangroves enhance local fisheries catches: A global meta-analysis. Fish Fish. 18, 79–93 (2017).

    Google Scholar 

  • 3.

    del Valle, A., Eriksson, M., Ishizawa, O. A. & Miranda, J. J. Mangroves protect coastal economic activity from hurricanes. Proc. Natl. Acad. Sci. U.S.A. 117, 265–270 (2020).

    PubMed 

    Google Scholar 

  • 4.

    Zhang, K. et al. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 102–103, 11–23 (2012).

    ADS 

    Google Scholar 

  • 5.

    Menendez, P., Losada, I. J., Torres-Ortega, S., Narayan, S. & Beck, M. W. The global flood protection benefits of mangroves. Sci. Rep. 10, 1–11 (2020).

    Google Scholar 

  • 6.

    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  • 7.

    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).

    Google Scholar 

  • 8.

    Bryan-Brown, D. N. et al. Global trends in mangrove forest fragmentation. Sci. Rep. https://doi.org/10.1038/s41598-020-63880-1 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Duke, N. C. et al. A world without mangroves ?. Science 317, 41–43 (2007).

    CAS 

    Google Scholar 

  • 10.

    Friess, D. A. et al. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).

    Google Scholar 

  • 11.

    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Reynolds, L. K., McGlathery, K. J. & Waycott, M. Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7, 1–7 (2012).

    Google Scholar 

  • 13.

    Lowenfeld, R. & Klekowski, E. J. Mangrove genetics. I. Mating system and mutation rates of rhizophora mangle in Florida and San Salvador Island, Bahamas. Int. J. Plant Sci. 153, 394–399 (1992).

  • 14.

    Kennedy, J. P., Sammy, J. M., Rowntree, J. K. & Preziosi, R. F. Mating system variation in neotropical black mangrove, Avicennia germinans, at three spatial scales towards an expanding northern distributional limit. Estuarine Coastal Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106754 (2020).

    Article 

    Google Scholar 

  • 15.

    Van Der Stocken, T. et al. Impact of landscape structure on propagule dispersal in mangrove forests. Mar. Ecol. Prog. Ser. 524, 95–106 (2015).

    ADS 

    Google Scholar 

  • 16.

    Hamilton, J. F., Osman, R. W. & Feller, I. C. Modeling local effects on propagule movement and the potential expansion of mangroves and associated fauna: Testing in a sub-tropical lagoon. Hydrobiologia 803, 173–187 (2017).

    Google Scholar 

  • 17.

    Binks, R. M. et al. Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Divers. Distrib. 25, 298–309 (2019).

    Google Scholar 

  • 18.

    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108 (2017).

    Google Scholar 

  • 19.

    Cisneros-de la Cruz, D. J. et al. Short-distance barriers affect genetic variability of Rhizophora mangle in the Yucatan Peninsula. Ecol. Evolut. https://doi.org/10.1002/ece3.4575 (2018).

    Article 

    Google Scholar 

  • 20.

    Kennedy, J. P. et al. Postglacial expansion pathways of red mangrove Rhizophora mangle, in the Caribbean Basin and Florida. Am. J. Bot. 103, 260–276 (2016).

    PubMed 

    Google Scholar 

  • 21.

    Wee, A. K. S. et al. Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba. J. Sm Indo-West Pac. For. 8, 1–21 (2017).

    Google Scholar 

  • 22.

    Iuit, L. R. C. et al. Genetic structure and connectivity of the red mangrove at different geographic scales through a complex transverse hydrological system from freshwater to marine ecosystems. Diversity 12, 113 (2020).

    Google Scholar 

  • 23.

    Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 803, 189–207 (2017).

    Google Scholar 

  • 24.

    Triest, L. et al. Channel network structure determines genetic connectivity of landward–seaward Avicennia marina populations in a tropical bay. Ecol. Evol. 10, 12059–12075 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Canty, S. W. J., Fox, G., Rowntree, J. K. & Preziosi, R. F. Genetic structure of a remnant Acropora cervicornis population. Sci. Rep. 11, 1–9 (2021).

    Google Scholar 

  • 26.

    Kettenring, K. M., Mossman, B. N., Downard, R. & Mock, K. E. Fine-scale genetic diversity and landscape-scale genetic structuring in three foundational bulrush species: Implications for wetland revegetation. Restor. Ecol. 27, 408–420 (2019).

    Google Scholar 

  • 27.

    Mijangos, J. L., Pacioni, C., Spencer, P. B. S. & Craig, M. D. Contribution of genetics to ecological restoration. Mol. Ecol. 24, 22–37 (2015).

    PubMed 

    Google Scholar 

  • 28.

    Ross, M. S. et al. Early post-hurricane stand development in Fringe mangrove forests of contrasting productivity. Plant Ecol. 185, 283–297 (2006).

    Google Scholar 

  • 29.

    Kennedy, J. P. et al. Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit. Mol. Ecol. https://doi.org/10.1111/mec.15513 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    NOAA. Historical Hurricane Tracks. https://coast.noaa.gov/hurricanes/ (National Hurricane Center | National Oceanic and Atmospheric Administration).

  • 31.

    Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).

    Google Scholar 

  • 32.

    Cannicci, S. et al. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquat. Bot. 89, 186–200 (2008).

    Google Scholar 

  • 33.

    Krauss, K. W. et al. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 89, 105–127 (2008).

    Google Scholar 

  • 34.

    Clarke, P. J. Effects of experimental canopy gaps on mangrove recruitment: Lack of habitat partitioning may explain stand dominance. J. Ecol. 92, 203–213 (2004).

    Google Scholar 

  • 35.

    Sandoval-Castro, E. et al. Post-glacial expansion and population genetic divergence of Mangrove species Avicennia germinans (L.) stearn and Rhizophora mangle L. along the Mexican coast. PLoS ONE 9, 113 (2014).

    Google Scholar 

  • 36.

    Rabinowitz, D. Dispersal properties of Mangrove propagules. Biotropica 10, 47–57 (1978).

    Google Scholar 

  • 37.

    Chollett, I. et al. A case for redefining the boundaries of the Mesoamerican reef ecoregion. Coral Reefs https://doi.org/10.1007/s00338-017-1595-4 (2017).

    Article 

    Google Scholar 

  • 38.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10 (2015).

    Google Scholar 

  • 39.

    Jump, A. S. & Peñuelas, J. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc. Natl. Acad. Sci. U.S.A. 103, 8096–8100 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Jalonen, R., Hong, L. T., Lee, S. L., Loo, J. & Snook, L. Integrating genetic factors into management of tropical Asian production forests: A review of current knowledge. For. Ecol. Manag. 315, 191–201 (2014).

    Google Scholar 

  • 41.

    Pacioni, C., Trocini, S., Wayne, A. F., Rafferty, C. & Page, M. Integrating population genetics in an adaptive management framework to inform management strategies. Biodivers. Conserv. 29, 947–966 (2020).

    Google Scholar 

  • 42.

    Van der Stocken, T. et al. A general framework for propagule dispersal in mangroves. Biol. Rev. 94, 1547–1575 (2019).

    PubMed 

    Google Scholar 

  • 43.

    Bologna, P. A. X. et al. Lingering impacts of Hurricane Hugo on Rhizophora mangle (Red Mangrove) population genetics on St. John, USVI. Diversity 11, 1–14 (2019).

    Google Scholar 

  • 44.

    Cerón-Souza, I., Bermingham, E., McMillan, W. O. & Jones, F. A. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evol. Biol. 12, 205 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Núñez-Farfán, J. et al. Genetic divergence among Mexican populations of red mangrove (Rhizophora mangle): Geographic and historic effects. Evol. Ecol. Res. 4, 1049–1064 (2002).

    Google Scholar 

  • 46.

    Coleman, M. A. et al. Restore or redefine: Future trajectories for restoration. Front. Mar. Sci. 7, 1–12 (2020).

    Google Scholar 

  • 47.

    Breed, M. F. et al. Priority actions to improve provenance decision-making. Bioscience 68, 510–516 (2018).

    Google Scholar 

  • 48.

    Breed, M. F. et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20, 615–628 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Kandil, F. E., Grace, M. H., Seigler, D. S. & Cheeseman, J. M. Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees 18, 518–528 (2004).

    CAS 

    Google Scholar 

  • 50.

    Sahu, S. K., Thangaraj, M. & Kathiresan, K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012, 1–6 (2012).

    Google Scholar 

  • 51.

    Wang, S., Meyer, E., Mckay, J. K. & Matz, M. V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Guo, Y. et al. An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genomics 15, 1–13 (2014).

    CAS 

    Google Scholar 

  • 53.

    Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Marandel, F. et al. Estimating effective population size using RADseq: Effects of SNP selection and sample size. Ecol. Evol. 10, 1929–1937 (2019).

    Google Scholar 

  • 56.

    Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • 57.

    Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

  • 58.

    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr : An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 

    Google Scholar 

  • 60.

    Garnier-Géré, P. & Chikhi, L. Population subdivision, Hardy-Weinberg equilibrium and the Wahlund effect. Els. https://doi.org/10.1002/9780470015902.a0005446.pub3 (2013).

    Article 

    Google Scholar 

  • 61.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

  • 64.

    Pritchard, J. K. & Wen, W. Documentation for Structure Software: Version 2.2. http://pritch.bsd.uchicago.edu (2002).

  • 65.

    Vähä, J. P., Erkinaro, J., Niemelä, E. & Primmer, C. R. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16, 2638–2654 (2007).

    PubMed 

    Google Scholar 

  • 66.

    Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).

    MathSciNet 
    MATH 

    Google Scholar 

  • 67.

    Meirmans, P. G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. Bioinformatics 28, 2537–2539 (2012).

  • 69.

    Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573 (1999).

    PubMed 

    Google Scholar 

  • 70.

    Peakall, R., Ruibal, M. & Lindenmayer, D. B. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57, 1182–1195 (2003).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Preparing global online learners for the clean energy transition

    Energizing communities in Africa