Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).
Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO Agricultural Development Economics Division, 2012).
Arunrat, N., Pumijumnong, N., Sereenonchai, S., Chareonwong, U. & Wang, C. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ. 726, 137864 (2020).
Google Scholar
Lafferty, D. C. et al. Statistically bias-corrected and downscaled climate models underestimate the adverse effects of extreme heat on U.S. maize yields. Commun. Earth Environ. 2, 196 (2021).
Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food. 2, 54–65 (2021).
Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).
Sun, T. et al. Current rice models underestimate yield losses from short-term heat stresses. Glob. Chang. Biol. 27, 402–416 (2020).
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4, 287–291 (2014).
Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 1–10 (2020).
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 494, 390 (2013).
Google Scholar
Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).
Google Scholar
Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
Google Scholar
Guo, J. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).
Google Scholar
Galloway, J. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
Google Scholar
Xia, L., Lam, S. K., Yan, X. & Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 51, 7450–7457 (2017).
Google Scholar
Zhang, T. et al. Replacing synthetic fertilizer by manure requires adjusted technology and incentives: A farm survey across China. Resour. Conserv. Recycl. 168, 105301 (2021).
Bi, L. et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ. 129, 534–541 (2009).
Du, Y. et al. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 193, 104617 (2020).
Google Scholar
Wang, K., Zhang, X. & Ervin, E. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. J. Plant Physiol. 169, 492–500 (2012).
Google Scholar
Jespersen, D. & Huang, B. Proteins associated with heat‐induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics. 15, 798–812 (2015).
Google Scholar
Xi, Y. et al. Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. Ecotoxicol. Environ. Saf. 190, 110048 (2020).
Google Scholar
Waraich, E. A., Ahmad, R., Halim, A. & Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: a review. J. Soil Sci. Plant Nut. 12, 221–244 (2012).
Yamori, W., Noguchi, K., Hikosaka, K. & Terashima, I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol. 152, 388–399 (2010).
Google Scholar
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7, 405–410 (2002).
Google Scholar
Wang, Q., Chen, J., He, N. & Guo, F. Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 19, 849 (2018).
Cheng, Q. et al. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. Plant Biol. 17, 419–429 (2015).
Google Scholar
Miura, K. et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403–1414 (2007).
Google Scholar
Xie, G., Kato, H., Sasaki, K. & Imai, R. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett. 583, 2734–2738 (2009).
Google Scholar
Hasanuzzaman, M., Hossain, M. A. & Fujita, M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol. Rep. 5, 353 (2011).
Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T. & Takabe, T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163, 515–523 (2002).
Google Scholar
Khan, S. et al. Plants mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants 8, 508 (2019).
Google Scholar
Li, Y., Gao, Y., Xu, X., Shen, Q. & Guo, S. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J. Exp. Bot. 60, 2351–2360 (2009).
Google Scholar
Xiong, D. et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature, and irradiance are affected by N supplements in rice. Plant. Cell Environ. 38, 2541–2550 (2015).
Google Scholar
Waraich, E. A., Ahmad, R., Ashraf, M. Y., Saifullah & Ahmad, M. Improving agricultural water use effciency by nutrient management in crop plants. Acta Agric. Scand. Sect.-B Soil. Plant Sci. 61, 291–304 (2011).
Google Scholar
Dias, A. S. & Lidon, F. C. Bread and durum wheat tolerance under heat stress: A synoptical overview. Emir. J. Food Agric. 22, 412–436 (2010).
Meshah, E. A. E. Effect of irrigation regimes and foliar spraying of potassium on yield, yield components and water use efficiency of wheat in sandy soils. World J. Agric. Sci. 5, 662–669 (2009).
Huang, G., Zhang, Q., Wei, X., Peng, S. & Li, Y. Nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance. Front. Plant Sci. 8, 945 (2017).
Zhou, Y. et al. High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice. Field Crop. Res. 228, 68–75 (2018).
Hou, L. et al. Effects of different phosphate fertilizer application on permeability of membrane and antioxidative enzymes in rice under low temperature stress. Acta Agriculturae. Boreali-Sinica 27, 118–123 (2012).
Dong, W. et al. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7, e44504 (2012).
Google Scholar
Bertollo, A. M. et al. Precrops alleviate soil physical limitations for soybean root growth in an Oxisol from southern Brazil. Soil Till. Res. 206, 104820 (2021).
Ren, Y. et al. Functional compensation dominates plant rhizosphere microbiota assembly of plant rhizospheric bacterial community. Soil Biol. Biochem. 150, 107968 (2020).
Google Scholar
Oka, Y. Mechanisms of nematode suppression by organic soil amendments—a review. Appl. Soil Ecol. 44, 101–115 (2010).
Rose, M. T. et al. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron 124, 37–89 (2014).
Google Scholar
García, A. C. et al. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. J. Plant Physiol. 192, 56–63 (2016).
Dieleman, W. I. et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Chang. Biol. 18, 2681–2693 (2012).
Muhammad, Q. et al. Yield sustainability, soil organic carbon sequestration, and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Till. Res. 198, 104509 (2020).
Zhang, X. et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta‐analysis. Glob. Chang. Biol. 26, 888–900 (2020).
Zhang, X. et al. Significant residual effects of wheat fertilization on greenhouse gas emissions in succeeding soybean growing season. Soil Till. Res. 169, 7–15 (2017).
Latare, A. M., Kumar, O., Singh, S. K. & Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecol. Eng. 69, 17–24 (2014).
Zhang, J. et al. Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice–wheat system. Crop J. 9, 1191–1197 (2021).
Pachauri, R. K. et al. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
Choi, W. J., Lee, M. S., Choi, J. E., Yoon, S. & Kim, H. Y. How do weather extremes affect rice productivity in a changing climate? An answer to episodic lack of sunshine. Glob. Chang. Biol. 19, 1300–1310 (2013).
FAO. FAOSTAT Online Statistical Service. https://www.fao.org/faostat/en/#data/RFN, (FAO, 2016).
Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).
Google Scholar
Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycling Agroecosyst. 66, 119–131 (2003).
Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R. & Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 465, 72–96 (2013).
Google Scholar
Aryal, J. P. et al. Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environ. Sci. Pollut. Res. 28, 51480–51496 (2021).
Google Scholar
Zhang, Q. et al. Targeting hotspots to achieve sustainable nitrogen management in China’s smallholder-dominated cereal production. Agronomy 11, 557 (2021).
Tyagi, V. K. et al. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable Sustain. Energy Rev. 93, 380–399 (2018).
Schlesinger, W. H. Carbon sequestration in soils: Some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).
Google Scholar
Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010).
Zhao, F., Yang, L., Chen, L., Li, S. & Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response, and human exposure. Chemosphere 219, 882–895 (2019).
Google Scholar
Chadwick, D. R. et al. Strategies to reduce nutrient pollution from manure management in China. Front. Agr. Sci. Eng. 7, 45–55 (2020).
Jin, S. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain 4, 48–55 (2021).
Chen, D., Yuan, L., Liu, Y., Ji, J. & Hou, H. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur. J. Agron. 90, 34–42 (2017).
Siddik, M. A. et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur. J. Agron. 106, 30–38 (2019).
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207 (1973).
Google Scholar
Page, A. L., Miller, R. H. & Dennis, R. K. Methods of Soil Analysis. Part 2 Chemical Methods (ed Page, A. L.) (Soil Science Society of America, 1982).
Black, C. A. Methods of Soil Analysis Part II. Chemical and Microbiological Properties (ed Norman, A. G.) (American Society of Agriculture, 1965).
Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).
Google Scholar
Knudsen, D., Peterson, G. A. & Pratt, P. F. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (ed Page, A. L.) (American Society of Agriculture, 1982).
Olsen, S. R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (United States Department of Agriculture Circular, 1954).
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 amazon drought. Science 331, 554–554 (2011).
Google Scholar
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
van Groenigen, K. J., Van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 3, 288–291 (2013).
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).
Laborte, A. G. et al. RiceAtlas, a spatial database of global rice calendars and production. Sci. Data 4, 170074 (2017).
Source: Ecology - nature.com