in

Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships

  • Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu Rev. Plant Biol. 64, 807–838 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Helfrich, E. J. N. et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3, 909–919 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, 538–544 (2019).

    Article 
    CAS 

    Google Scholar 

  • Turner, T. R. et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7, 2248–2258 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Lugtenberg, B. & Kamilova, F. Plant-growth-promoting Rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shekhawat, K. et al. Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Rep. 22, e51049 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Reisberg, E. E., Hildebrandt, U., Riederer, M. & Hentschel, U. Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS ONE 8, e78613 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kniskern, J. M., Traw, M. B. & Bergelson, J. Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol. Plant Microbe Interact. 20, 1512–1522 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hassani, M. A., Duran, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lidicker, W. Z. Clarification of interactions in ecological systems. Bioscience 29, 475–477 (1979).

    Article 

    Google Scholar 

  • Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: a review. J. Adv. Res. 19, 57–65 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blair, P. M. et al. Exploration of the biosynthetic potential of the Populus microbiome. mSystems 3, e00045-00018 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Suda, W., Nagasaki, A. & Shishido, M. Powdery mildew-infection changes bacterial community composition in the phyllosphere. Microbes Environ. 24, 217–223 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Manching, H. C., Balint-Kurti, P. J. & Stapleton, A. E. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Front. Plant Sci. 5, 403 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, 100235 (2016).

    Article 
    CAS 

    Google Scholar 

  • Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 25, 217–228 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Knief, C., Frances, L. & Vorholt, J. A. Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb. Ecol. 60, 440–452 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Fan, J., Crooks, C. & Lamb, C. High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Plant J. 53, 393–399 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vogel, C. M., Potthoff, D. M., Schäfer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, I.-M. A. et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, 751–763 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ortiz, A., Vega, N. M., Ratzke, C. & Gore, J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. ISME J. 15, 2131–2145 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Goberna, M. & Verdú, M. Predicting microbial traits with phylogenies. ISME J. 10, 959–967 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar 

  • Cahill, J. F., Kembel, S. W., Lamb, E. G. & Keddy, P. A. Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspect. Plant Ecol. 10, 41–50 (2008).

    Article 

    Google Scholar 

  • Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duncan, R. P. & Williams, P. A. Ecology – Darwin’s naturalization hypothesis challenged. Nature 417, 608–609 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Slingsby, J. A. & Verboom, G. A. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am. Nat. 168, 14–27 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Teixeira, P. J. P. L., Colaianni, N. R., Fitzpatrick, C. R. & Dangl, J. L. Beyond pathogens: microbiota interactions with the plant immune system. Curr. Opin. Microbiol. 49, 7–17 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maier, B. A. et al. A general non-self response as part of plant immunity. Nat. Plants 7, 696–705 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).

    Article 

    Google Scholar 

  • Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Billick, I. & Case, T. J. Higher-order interactions in ecological communities – what are they and how can they be detected. Ecology 75, 1529–1543 (1994).

    Article 

    Google Scholar 

  • Grilli, J., Barabas, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sundarraman, D. et al. Higher-order interactions dampen pairwise competition in the zebrafish gut microbiome. mBio 11, e01667-20 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morris, C. in Encyclopedia for Life Sciences (National Publishing Group, 2002).

  • Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Iversen, O. J. & Grov, A. Studies on lysostaphin – separation and characterization of 3 enzymes. Eur. J. Biochem. 38, 293–300 (1973).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Recsei, P. A., Gruss, A. D. & Novick, R. P. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc. Natl Acad. Sci. USA 84, 1127–1131 (1987).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kessler, E., Safrin, M., Abrams, W. R., Rosenbloom, J. & Ohman, D. E. Inhibitors and specificity of Pseudomonas aeruginosa LasA. J. Biol. Chem. 272, 9884–9889 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trayer, H. R. & Buckley, C. E. Molecular properties of lysostaphin, a bacteriolytic agent specific for Staphylococcus aureus. J. Biol. Chem. 245, 4842–4846 (1970).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Heymer, B. & Schmidt, W. C. Purification and characterization of a Streptomyces albus endo-N-acetylmuramidase lytic for group A and other beta hemolytic streptococci. Microbios 12, 51–66 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Peyraud, R. et al. Demonstration of the ethylmalonyl-CoA pathway by using C-13 metabolomics. Proc. Natl Acad. Sci. USA 106, 4846–4851 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schlesier, B., Breton, F. & Mock, H. P. A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant Mol. Biol. Rep. 21, 449–456 (2003).

    CAS 
    Article 

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Integrated Development Environment for R (R Studio, 2020).

  • R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package v. 2.5-7 (2020).

  • Armenteros, J. J. A. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gasteiger, E. et al. in The Proteomics Protocols Handbook 571–607 (ed Walker, J. M.) (Humana Press, 2005).

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bushnell, B. BBMap short read aligner, and other bioinformatic tools (SourceForge, version 38.87); https://sourceforge.net/projects/bbmap

  • Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    “The world needs your smarts, your skills,” Ngozi Okonjo-Iweala tells MIT’s Class of 2022

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks