Lawrence, H. In City Trees: A Historical Geography from the Renaissance through to the Nineteenth Century (Charlottesville and London: University of Virginia Press, 2006, Lewis Mumford. The City in History: Its Origins, Its Transformations and Its Prospects (San Diego: Harvest Book Harcourt, 1961).
Frawley, J. Campaigning for street trees, Sydney botanic gardens, 1890s–1920s. Environ. Hist. 15(3), 303–322. https://doi.org/10.3197/096734009X12474738199953 (2009).
Google Scholar
Seburanga, J. L., Kaplin, B. A., Zhang, Q.-X. & Gatesire, T. Amenity trees and green space structure in urban settlements of Kigali, Rwanda. Urban. For. Urban Green. 13(84–9313), 84–93. https://doi.org/10.1016/j.ufug.2013.08.001 (2014).
Google Scholar
Wilson, E. H. Northern trees in southern lands. J. Arnold Arbor. 4(2), 61–90 (1923).
Google Scholar
Gwedla, N. & Shackleton, C. M. Population size and development history determine street tree distribution and composition within and between Eastern Cape towns, South Africa. Urban. For. Urban. Gree. 25, 11–18. https://doi.org/10.1016/j.ufug.2017.04.014 (2017).
Google Scholar
Jacobs, A. B., Macdonald, E. & Rofé, Y. In The Boulevard Book: History, Evolution, Design of Multiway Boulevards (MIT Press, Cambridge, MA 2002), Robinson, W. The Parks and Gardens of Paris Considered in Relation to the Wants of Other Cities and of Private and Public Gardens (McMillan and Co., London , 1878).
Akbari, A. H., Pomerantz, M. & Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban. Sol. Energy. 70(3), 295–310 (2001).
Google Scholar
Roy, S., Byrne, J. & Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 11, 351–363. https://doi.org/10.1016/j.ufug.2012.06.006 (2012).
Google Scholar
Schäffler, A. & Swilling, M. Valuing green infrastructure in an urban environment under pressure—The Johannesburg case. Ecol. Econ. 86, 246–257. https://doi.org/10.1016/j.ecolecon.2012.05.008 (2013).
Google Scholar
Santamour, F. S. Trees for urban planting: Diversity, uniformity and common sense. In Proceedings of the 7th Conference of the Metropolitan Tree Improvement Alliance (METRIA), vol. 7, 57–65 (1990).
Shams, Z. I. Changes in diversity and composition of flora along a corridor of different land uses in Karachi over 20 years: caUses and implications. Urban. For. Urban Green. 17, 71–79. https://doi.org/10.1016/j.ufug.2016.03.002 (2016).
Google Scholar
Kambites, C. & Owen, S. Renewed prospects for green infrastructure planning in the UK. Plan. Prac. Res. 21(94), 483–496. https://doi.org/10.1080/02697450601173413 (2006).
Google Scholar
Cho, M. A., Malahlelac, O. & Ramoeloa, A. Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as case study. Int. J. Appl. Earth. Obs. 38, 349–357. https://doi.org/10.1016/j.jag.2015.01.015 (2015).
Google Scholar
Niculescu, S., Lardeux, C., Grigoras, I., Hanganu, J. & David, L. Synergy between LiDAR, RADARSAT-2, and spot-5 images for the detection and mapping of wetland vegetation in the Danube Delta. IEEE J Sel. Top. Appl. Earth. Obs. Remote Sens. 9, 3651–3666 (2016).
Google Scholar
Lefebvre, A., Picand, P.-A. & Sannier, C. Mapping tree cover in European cities: Comparison of classification algorithms for an operational production framework. In 2015 Joint Urban Remote Sensing Event (JURSE), IEEE, 1–4 (2015) https://doi.org/10.1109/JURSE.2015.7120511.
Wyndham, C. H., Strydom, N. B., Van Rensburg, A. J. & Rogers, G. G. Effects on maximal oxygen intake of acute changes in altitude in a deep mine. J. Appl. Physiol. 29(5), 552–555 (1970).
Google Scholar
Hegnauer, R. Chemotaxonomie der Pflanzen, vol. 3, 268–281 (Birkhäuser Verlag, Basel, 1964).
Mabberley, D. J. The Plant-Book, 2nd edn. 87, 368–369 (Cambridge University Press, Cambridge, 1997).
Gachet, M. S. & Schühly, W. Jacaranda—An ethnopharmacological and phytochemical review. J. Ethnopharmacol. 121, 14–27. https://doi.org/10.1016/j.jep.2008.10.015 (2009).
Google Scholar
Gilman, E. F. & Watson, D. G. Jacaranda mimosifolia. Fact Sheet ST-317, Environmental Horticulture Department, Florida Cooperative Extension Service, University of Florida, Gainesville, http://www.ci.milpitas.ca.gov/_pdfs/council/2016/021616/item_04.pdf Accessed 6 June 2020 (1993).
Dineva, S. B. Comparative studies of the leaf morphology and structure of white ash Fraxinus americana L. and London plane tree Platanus acerifolia Willd growing in polluted area. Dendrobiology 52, 3–8 (2004).
Liu, G., Li, Z. & Bao, M. Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157, 145–154. https://doi.org/10.1007/s10681-007-9406-6 (2007).
Google Scholar
Henry, A. & Flood, M. G. The history of the London plane, Platanus acerifolia, with notes on the Genus Platanus. Proc. R. Irish Acad Sect. B Biol. Geol. Chem. Sci. 35, 9–28 (1919).
Chavez, P. S. Image-based atmospheric corrections revisited and improved. Photogram. Eng. Rem. S. 62, 1025–1036 (1996).
Riano, D., Chuvieco, E., Salas, J. & Aguado, I. Assessment of different topographic corrections in Landsat-T. M. data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens. 41, 1056–1061. https://doi.org/10.1109/TGRS.2003.811693 (2003).
Google Scholar
Rouse J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Greenbelt, USA: NASASP-351; 1974. Monitoring vegetation system in the great plains with ERTS, 3010–3017 (1974).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).
Du, Y. et al. New hyperspectral discrimination measure for spectral characterization. Opt. Eng. 43(8), 1777–1786 (2004).
Google Scholar
Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions’. Bull. Calcutta Math. Soc. 35, 99–109 (1943).
Google Scholar
Bruzzone, L., Roli, F. & Serpico, S. B. An extension to multiclass cases of the Jefferys-Matusita distance. IEEE Trans. Pattern. Anal. Mach. Intell. 33, 1318–1321 (1995).
Kaufman, Y. & Remer, L. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 32(3), 672–683 (1994).
Google Scholar
Padma, S. & Sanjeevi, S. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis. Int. J. Appl. Earth. Obs. 32, 138–151. https://doi.org/10.1016/j.jag.2014.04.001 (2014).
Google Scholar
Kavzoglu, T. & Mather, P. M.. The use of feature selection techniques in the context of artificial neural networks. In Proceedings of the 26th Annual Conference of the Remote Sensing Society (CD-ROM), 12–14 September (Leicester, UK, 2000).
Gunal, S. & Edizkan, R. Subspace based feature selection for pattern recognition. Info. Sci. 178, 3716–3726. https://doi.org/10.1016/j.ins.2008.06.001 (2008).
Google Scholar
Tolpekin, V. A. & Stein, A. Quantification of the effects of land-cover-class spectral separability on the accuracy of markov-random-field-based superresolution mapping. IEEE Trans. Geosci. Remote Sens. 47(9), 3283–3297. https://doi.org/10.1109/TGRS.2009.2019126 (2009).
Google Scholar
Paterson, M., Lucas, R. M. & Chisholm, L. Differentiation of selected Australian woodland species using CASI data. In Proceedings IEEE International Geoscience and Remote Sensing Symposium, 643–645 (University of New South Wales, Australia, 2001).
Richards, J. A. & Jai, X. Remote Sensing Digital Analysis: An Introduction, 4th edition (Springer, Berlin, 1999).
Veraverbeke, S., Harris, S. & Hook, S. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. Environ. 115, 2702–2709. https://doi.org/10.1016/j.rse.2011.06.010 (2011).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Georganos, S. et al. Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. https://doi.org/10.1080/10106049.2019.1595177 (2019).
Google Scholar
Mellor, A., Haywood, A., Stone, C. & Jones, S. The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens. 5, 2838–2856. https://doi.org/10.3390/rs5062838 (2013).
Google Scholar
Congalton, R. G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland. Fire. 10, 321–328 (2001).
Google Scholar
Thomas, I. L., Ching, N. P., Benning, V. M. & D’aguanno, J. A. Review Article A review of multi-channel indices of class separability. Int. J. Remote Sens. 8(3), 331–350. https://doi.org/10.1080/01431168708948645 (1987).
Google Scholar
Mausel, P. W., Kramber, W. J. & Lee, J. K. Optimum band selection for supervised classification of multispectral data. Photogramm. Eng. Remote. Sens. 56(1), 55–60 (1990).
Singh, A. Some clarifications about the pairwise divergence measure in remote sensing. Int. J. Remote Sens. 5(3), 623–627. https://doi.org/10.1080/01431168408948845 (1984).
Google Scholar
Kumar, P. et al. A statistical significance of differences in classification accuracy of crop types using different classification algorithms. Geocarto Int. 32(2), 206–224. https://doi.org/10.1080/10106049.2015.1132483 (2017).
Google Scholar
McPherson, E. G., Simpson, J. R., Peper, P. J., Xiao, Q. & Wu, C. Los Angeles 1-Million Tree Canopy Cover Assessment. General Technical Report PSW-GTR-207. U.S. Department of Agriculture Forest Service Pacific Southwest Research Station. Albany, CA, 1–64 (2008).
Rahimizadeh, N., Kafaky, S. B., Sahebi, M. R. & Mataji, A. Forest structure parameter extraction using SPOT-7 satellite data by object- and pixel-based classification methods. Environ. Monit. Assess. 192, 43. https://doi.org/10.1007/s10661-019-8015-x (2020).
Google Scholar
McRoberts, R. E. Satellite image-based maps: Scientific inference or pretty pictures?. Remote. Sens. Environ. 115, 715–724. https://doi.org/10.1016/j.rse.2010.10.013 (2011).
Google Scholar
McRoberts, R. E. Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote. Sens. Environ. 114, 1017–1025. https://doi.org/10.1016/j.rse.2009.12.013 (2010).
Google Scholar
Kokubu, Y., Hara, S. & Tani, A. Mapping seasonal tree canopy cover and leaf area using worldview-2/3 satellite imagery: A megacity-scale case study in Tokyo urban area. Remote. Sens. 12(9), 1505. https://doi.org/10.3390/rs12091505 (2020).
Google Scholar
Johannesburg City Parks and Zoo. 2018. The city that’s a rain forest. http://www.jhbcityparks.com/index.php/street-trees-contents-29. Accessed 14 June 2020.
Tesfamichael, S. G., Newete, S. W., Adam, E. & Dubula, B. Field spectroradiometer and simulated multispectral bands for discriminating invasive species from morphologically similar cohabitant plants. GIsci. Remote Sens. 55(3), 417–436. https://doi.org/10.1080/15481603.2017.1396658 (2018).
Google Scholar
McPherson, E. G., Simpsona, J. R., Xiao, Q. & Wu, C. Million trees Los Angeles canopy cover and benefit assessment. Landsc. Urban. Plan. 99, 40–50 (2011).
Google Scholar
Baines, O., Wilkes, P. & Disney, M. Quantifying urban forest structure with open-access remote sensing data sets. Urban For. Urban Green. 50, 126653. https://doi.org/10.1016/j.ufug.2020.126653 (2020).
Google Scholar
Nowak, D. J. et al. Measuring and analyzing urban tree cover. Landsc. Urban Plan. 36, 49–57 (1996).
Google Scholar
Estoque, R. C. et al. Remotely sensed tree canopy cover-based indicators for monitoring global sustainability and environmental initiatives. Environ. Res. Lett. 16, 044047. https://doi.org/10.1088/1748-9326/abe5d9 (2021).
Google Scholar
Paap, T., de Beer, W., Migliorini, D., Nel, W. J. & Wingfield, M. J. The polyphagous shot hole borer (PSHB) and its fungal symbiont Fusarium euwallaceae: A new invasion in South Africa Trudy. Aust. Plant. Pathol. 47, 231–237. https://doi.org/10.1007/s13313-018-0545-0 (2018).
Google Scholar
Source: Ecology - nature.com