in

Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia

[adace-ad id="91168"]
  • Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. Forest Biogeosci. For. 13, 548–558 (2020).

    Google Scholar 

  • Deacon, J. Fungal Biology (Wiley, 2009).

    Google Scholar 

  • Ruiz-Almenara, C., Gándara, E. & Gómez-Hernández, M. Comparison of diversity and composition of macrofungal species between intensive mushroom harvesting and non-harvesting areas in Oaxaca, Mexico. PeerJ 7, e8325 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).

    ADS 

    Google Scholar 

  • Egli, S. Mycorrhizal mushroom diversity and productivity—an indicator of forest health?. Ann. For. Sci. 68, 81–88 (2011).

    Google Scholar 

  • Westover, K. M. & Bever, J. D. Mechanisms of plant species coexistence: Roles of rhizosphere bacteria and root fungal pathogens. Ecology 82, 3285–3294 (2001).

    Google Scholar 

  • Deacon, J. Fungal Biology (Wiley, 2006).

    Google Scholar 

  • Fernandez, C. W., Nguyen, N. H. U. H., Stefanski, A. & Han, Y. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Chang. Biol. 23, 1598–1609 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Heilmann-Clausen, J. et al. A fungal perspective on conservation biology. Conserv. Biol. 29, 61–68 (2015).

    PubMed 

    Google Scholar 

  • Shay, P.-E., Winder, R. S. & Trofymow, J. A. Nutrient-cycling microbes in coastal Douglas-fir forests: Regional-scale correlation between communities, in situ climate, and other factors. Front. Microbiol. 6, 5897 (2015).

    Google Scholar 

  • van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    PubMed 

    Google Scholar 

  • Richter, A., Schöning, I., Kahl, T., Bauhus, J. & Ruess, L. Regional environmental conditions shape microbial community structure stronger than local forest management intensity. For. Ecol. Manag. 409, 250–259 (2018).

    Google Scholar 

  • Monkai, J., Hyde, K. D., Xu, J. & Mortimer, P. E. Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biol. Rev. 31, 1–11 (2017).

    Google Scholar 

  • White, F. Vegetation of Africa—a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa, Natural Resources Research Report XX. U.N. Educational, Scientific and Cultural Organization, Paris (1983).

  • Aynekulu, E. et al. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia. Folia Geobot. 51, 115–127 (2016).

    Google Scholar 

  • Wassie, A., Sterck, F. J. & Bongers, F. Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. J. Veg. Sci. 21, 938–948 (2010).

    Google Scholar 

  • Alem, D., Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Survey of macrofungal diversity and analysis of edaphic factors influencing the fungal community of church forests in Dry Afromontane areas of Northern Ethiopia. For. Ecol. Manag. 496, 119391 (2021).

    Google Scholar 

  • Aerts, R. et al. Conservation of the Ethiopian church forests: Threats, opportunities and implications for their management. Sci. Total Environ. 551–552, 404–414 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Wassie, A., Teketay, D. & Powell, N. Church forests in North Gonder administrative zone, Northern Ethiopia. For. Trees Livelihoods 15, 349–373 (2005).

    Google Scholar 

  • Wsaaie, A., Teketay, D. & Powell, N. Church forests in North Gondar Administative Zone, Northern Ethioopia. For. Trees Livelihoods 15, 349–373 (2005).

    Google Scholar 

  • Lemenih, M. & Bongers, F. Dry forests of Ethiopia and their silviculture. In Silviculture in the Tropics, Tropical Forestry 8 (ed. S. G€unter et al.) 261–272 (Springer, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-19986-8_17.

  • Fernández, A., Sánchez, S., García, P. & Sánchez, J. Macrofungal diversity in an isolated and fragmented Mediterranean Forest ecosystem. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 154, 139–148 (2020).

    Google Scholar 

  • Peay, K. G. & Bruns, T. D. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol. 204, 180–191 (2014).

    PubMed 

    Google Scholar 

  • Burgess, N. D., Hales, J. D. A., Ricketts, T. H. & Dinerstein, E. Factoring species, non-species values and threats into biodiversity prioritisation across the ecoregions of Africa and its islands. Biol. Conserv. 127, 383–401 (2006).

    Google Scholar 

  • Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398, 37–47 (2017).

    Google Scholar 

  • Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 1–14 (2020).

    Google Scholar 

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science (80-. ). 346 (2014).

  • Hawksworth, D. L. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate?. Biodivers. Conserv. 21, 2425–2433 (2012).

    Google Scholar 

  • Crous, P. W. et al. How many species of fungi are there at the tip of Africa?. Stud. Mycol. 55, 13–33 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez, M. L. et al. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For. Ecol. Manag. 258, 1856–1863 (2009).

    Google Scholar 

  • Phillips, H. et al. The effects of global change on soil faunal communities: a meta-analytic approach. Res. Ideas Outcomes 5 (2019).

  • Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).

    CAS 

    Google Scholar 

  • Rantalainen, M., Haimi, J., Fritze, H., Pennanen, T. & Setala, T. Soil decomposer community as a model system in studying the effects of habitat fragmentation and habitat corridors. Soil Biol. Biochem. 40, 853–863 (2008).

    CAS 

    Google Scholar 

  • Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Chang. 6, 182–186 (2016).

    ADS 

    Google Scholar 

  • Bahram, M., Põlme, S., Kõljalg, U., Zarre, S. & Tedersoo, L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 193, 465–473 (2012).

    PubMed 

    Google Scholar 

  • Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    PubMed 

    Google Scholar 

  • Krüger, C. et al. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front. Microbiol. 8, 1–16 (2017).

    Google Scholar 

  • Bahram, M., Peay, K. G. & Tedersoo, L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205, 1454–1463 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Li, P. et al. Spatial variation in soil fungal communities across paddy fields in Subtropical China. mSystems 5 (2020).

  • Grilli, G., Urcelay, C. & Galetto, L. Forest fragment size and nutrient availability: Complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol. 213, 155–165 (2012).

    Google Scholar 

  • Fernández, C., Vega, J. A. & Fonturbel, T. Shrub Resprouting Response After Fuel Reduction Treatments: Comparison of Prescribed Burning, Clearing and Mastication (Elsevier, 2013).

    Google Scholar 

  • Tedersoo, L., Sadam, A., Zambrano, M., Valencia, R. & Bahram, M. Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J. 4, 465–471 (2010).

    PubMed 

    Google Scholar 

  • Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 26, 6960–6973 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Colwell, R. K. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).

  • Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Pan, W. et al. DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol. 14, 10 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirk, P. M., Cannon, P. F., Minter, D. W. & J.A, S. Dictionary of the Fungi (The Centre for Agriculture and Bioscience International (CABI), 2008).

  • Rossman, A., Samuel, G., Rogerson, C. & Lowen, R. Genera of bionectriaceae, hypocreaceae and nectriaceae (hypocreales, ascomycetes). Stud. Mycol. 42, 1–260 (1999).

    Google Scholar 

  • Samuels, G. Trichoderma: A review of biology and systematics of the genus. Mycol. Res. 923–935 (1996).

  • Alem, D. et al. Soil fungal communities and succession following wildfire in Ethiopian dry Afromontane forests, a highly diverse underexplored ecosystem. For. Ecol. Manag. 474, 118328 (2020).

    Google Scholar 

  • Muleta, D., Woyessa, D. & Teferi, Y. Mushroom consumption habits of Wacha Kebele residents, southwestern Ethiopia. Glob. Res. J. Agric. Biol. Sci. 4, 6–16 (2013).

    Google Scholar 

  • Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Edible wild mushrooms of Ethiopia: Neglected non-timber forest products. Rev. Fitotec. Mex. 40, 391–397 (2017).

    Google Scholar 

  • Tedersoo, L. et al. Disentangling global soil fungal diversity. Science (80-) 346, 1052–1053 (2014).

    Google Scholar 

  • Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For. Ecol. Manag. 398 (2017).

  • Dang, P. et al. Changes in soil fungal communities and vegetation following afforestation with Pinus tabulaeformis on the Loess Plateau. Ecosphere 9 (2018).

  • Gilbert, G. S., Ferrer, A. & Carranza, J. Polypore fungal diversity and host density in a moist tropical forest. Biodivers. Conserv. 11, 947–957 (2002).

    Google Scholar 

  • Kottke, I., Beck, A., Oberwinkler, F., Homeier, J. & Neill, D. Arbuscular endomycorrhizas are dominant in the organic soil of a neotropical montane cloud forest. J. Trop. Ecol. 20, 125–129 (2004).

    Google Scholar 

  • Barnes, C. J., Van der Gast, C. J., Burns, C. A., McNamara, N. P. & Bending, G. D. Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities. Front. Microbiol. 7, 1–13 (2016).

    Google Scholar 

  • Tian, J. et al. Environmental factors driving fungal distribution in freshwater lake sediments across the Headwater Region of the Yellow River, China. Sci. Rep. 8, 4–11 (2018).

    Google Scholar 

  • Rosales-Castillo, J. et al. Fungal community and ligninolytic enzyme activities in Quercus deserticola Trel. litter from forest fragments with increasing levels of disturbance. Forests 9, 11 (2017).

    Google Scholar 

  • Kuhar, F., Barroetaveña, C. & Rajchenberg, M. New species of Tomentella (Thelephorales) from the Patagonian Andes forests. Mycologia 108, 780–790 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Alem, D., Dejene, T., Oria-de-Rueda, J. A., Geml, J. & Martín-Pinto, P. Soil fungal communities under Pinus patula Schiede ex Schltdl. & Cham. Plantation forests of different ages in Ethiopia. Forests 11, 1109 (2020).

    Google Scholar 

  • Tedersoo, L. et al. Terrestrial and lignicolous macrofungi. ISME J. 10, 1228–1239 (2016).

    Google Scholar 

  • Ruiz, R., Decock, C., Saikawa, M., Gene, J. & Guarro, J. Polyschema obclaviformis sp. Nov., and some new records of hyphomycetes from Cuba. Cryptogam. Mycol. 21, 215–220 (2000).

    Google Scholar 

  • Kaygusuz, O. New locality records of Trichoglossum hirsutum (Geoglossales: Geoglossaceae) based on molecular analyses, and prediction of its potential distribution in Turkey. Curr. Res. Environ. Appl. Mycol. 10, 443–456 (2020).

    Google Scholar 

  • Mayer, P. M. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecol. 33, 222–230 (2008).

    ADS 

    Google Scholar 

  • Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2, 236–249 (2017).

    Google Scholar 

  • Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).

    CAS 

    Google Scholar 

  • Mayer, P. M., Tunnell, S. J., Engle, D. M., Jorgensen, E. E. & Nunn, P. Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems 8, 200–209 (2005).

    Google Scholar 

  • Epstein, H. E., Burke, I. C. & Lauenroth, W. K. Regional patterns of decomposition and primary production rates in the U.S. great plains. Ecology 83, 320 (2002).

    Google Scholar 

  • Sharon, R., Degani, G. & Warburg, M. Comparing the soil macro-fauna in two oak-wood forests: Does community structure differ under similar ambient conditions?. Pedobiologia (Jena). 45, 355–366 (2001).

    Google Scholar 

  • Clocchiatti, A., Hannula, S. E., van den Berg, M., Korthals, G. & de Boer, W. The hidden potential of saprotrophic fungi in arable soil: Patterns of short-term stimulation by organic amendments. Appl. Soil Ecol. 147, 103434 (2020).

    Google Scholar 

  • Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lauber, C., Hamady, M., Knigh, R. & Fierer, N. Pyrosequencing based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ullah, S. et al. The response of soil fungal diversity and community composition to long-term fertilization. Appl. Soil Ecol. 140, 35–41 (2019).

    Google Scholar 

  • Bååth, E. & Anderson, T.-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).

    Google Scholar 

  • Zhang, T., Wang, N.-F., Liu, H.-Y., Zhang, Y.-Q. & Yu, L.-Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (high arctic). Front. Microbiol. 7 (2016).

  • Tian, D. et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Sci. Total Environ. 607–608, 1367–1375 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Zhao, A. et al. Influences of canopy nitrogen and water addition on am fungal biodiversity and community composition in a mixed deciduous forest of China. Front. Plant Sci. 9 (2018).

  • He, J. et al. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol. Ecol. 93, 1–12 (2017).

    Google Scholar 

  • Shi, L. et al. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 64, 305–315 (2014).

    Google Scholar 

  • Gebeyehu, G., Soromessa, T., Bekele, T. & Teketay, D. Plant diversity and communities along environmental, harvesting and grazing gradients in dry afromontane forests of Awi Zone, northwestern Ethiopia. Taiwania 64, 307–320 (2019).

    Google Scholar 

  • Zegeye, H., Teketay, D. & Kelbessa, E. Diversity and regeneration status of woody species in Tara Gedam and Abebaye forests, northwestern Ethiopia. J. For. Res. 22, 315–328 (2011).

    Google Scholar 

  • Abere, F., Belete, Y., Kefalew, A. & Soromessa, T. Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. J. Sustain. For. 36, 604–622 (2017).

    Google Scholar 

  • Masresha, G., Soromessa, T. & Kelbessa, E. Status and species diversity of Alemsaga Forest, Northwestern Ethiopia 14 (2015).

  • Rudolph, S., Maciá-Vicente, J. G., Lotz-Winter, H., Schleuning, M. & Piepenbring, M. Temporal variation of fungal diversity in a mosaic landscape in Germany. Stud. Mycol. 89, 95–104 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De la Varga, H., Águeda, B., Martínez-Peña, F., Parladé, J. & Pera, J. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22, 59–68 (2012).

    PubMed 

    Google Scholar 

  • Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).

    PubMed 

    Google Scholar 

  • Reeuwijk, L. Procedures for Soil Analysis (International Soil Reference and Information Centre, 2002).

    Google Scholar 

  • Walkley, A. & Black, I. A. An examination of the digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 34, 29–38 (1934).

    ADS 

    Google Scholar 

  • Kim, J., Kreller, C. R. & Greenberg, M. M. Preparation and analysis of oligonucleotides containing the C4’-oxidized abasic site and related mechanistic probes. J. Org. Chem. 70, 8122–8129 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. T. Soil sampling, preparation and analysis. 139–145 (1996).

  • Bouyoucos, G. H. A reclamation of the hydrometer for making mechanical analysis. Soil. Agro. J. 43, 434–438 (1951).

    CAS 

    Google Scholar 

  • Ihrmark, K., Bödeker, I. & Cruz-Martinez, K. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • White, T. ., Bruns, S., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press, 1990).

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

    PubMed 

    Google Scholar 

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105 (2020).

  • Hedberg, I. & Edwards, S. Flora of Ethiopia and Eritria (1989).

  • Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schön, M. E., Nieselt, K. & Garnica, S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS ONE 13, e0208493 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Castaño, C. et al. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol. 39, 328–335 (2019).

    Google Scholar 

  • Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).

    MATH 

    Google Scholar 

  • Kent, M. & Coker, P. Vegetation Description and Analysis: A Practical Approach (Belhaven Press, 1993).

    Google Scholar 

  • Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).

    Google Scholar 

  • Jost, L., Chao, A. & Chazdon, R. Compositional similarity and β (beta) diversity. in Biological Diversity. Frontiers in Measurement and Assessment (eds. A.E., Magurran & B.J., M.) 66–84 (Oxford University Press, 2011).

  • Kindt, R. & Coe, R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. (World Agroforestry Centre (ICRAF), 2005).

  • R Core Team. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-128. http://CRAN.R-project.org/package=nlme (2016).

  • Tóthmérész, B. Comparison of different methods for diversity ordering. J. Veg. Sci. 6, 283–290 (1995).

    Google Scholar 

  • Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation. (PRIMER-E, Plymouth, 2014).

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Finding her way to fusion