in

Metabarcoding the Antarctic Peninsula biodiversity using a multi-gene approach

  • Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A. IPCC special report on the ocean and cryosphere in a changing climate In: Pörtner H-O, Roberts D, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska Eea, editors. 2022; chapter 3: https://doi.org/10.1017/9781009157964 (in press).

  • Rozema PD, Venables HJ, van de Poll WH, Clarke A, Meredith MP, Buma AGJ. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol Oceanogr. 2017;62:235–52.

    Article 

    Google Scholar 

  • Venables HJ, Clarke A, Meredith MP. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol Oceanogr. 2013;58:1035–47.

    Article 

    Google Scholar 

  • Barnes DKA, Souster T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Change. 2011;1:365–8.

    Article 

    Google Scholar 

  • Grange L, Tyler P, Peck L, Cornelius N. Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Mar Ecol Prog Ser. 2004;278:141–55.

    Article 

    Google Scholar 

  • Schratzberger M, Ingels J. Meiofauna matters: The roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol. 2018;502:12–25.

    Article 

    Google Scholar 

  • Mayor D, Thornton B, Jenkins H, Felgate S. Microbiota: the living foundation. In: Beninger P, editor. Mudflat ecology. Switzerland AG: Springer Nature 2018. p. 43–61.

  • Fonseca VG, Sinniger F, Gaspar JM, Quince C, Creer S, Power DM, et al. Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Sci Rep. 2017;7:6094.

    CAS 
    Article 

    Google Scholar 

  • Vause BJ, Morley SA, Fonseca VG, Jazdzewska A, Ashton GV, Barnes DKA, et al. Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change. BMC Ecol. 2019;19:27.

    Article 

    Google Scholar 

  • Danovaro R, Scopa M, Gambi C, Fraschetti S. Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Mar Biol. 2007;152:339–50.

    Article 

    Google Scholar 

  • Watzin MC. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. Oecologia. 1983;59:163–6.

    Article 

    Google Scholar 

  • Schmidt JL, Deming JW, Jumars PA, Keil RG. Constancy of bacterial abundance in surficial marine sediments. Limnol Oceanogr. 1998;43:976–82.

    Article 

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.

    CAS 
    Article 

    Google Scholar 

  • Burdige DJ. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev. 2007;107:467–85.

    CAS 
    Article 

    Google Scholar 

  • Zou K, Thébault E, Lacroix G, Barot S. Interactions between the green and brown food web determine ecosystem functioning. Funct Ecol. 2016;30:1454–65.

    Article 

    Google Scholar 

  • Anderson TR, Pond DW, Mayor DJ. The role of microbes in the nutrition of detritivorous invertebrates: a stoichiometric analysis. Front Microbiol. 2016;7:2113.

    Google Scholar 

  • Lacoste E, Piot A, Archambault P, McKindsey CW, Nozais C. Bioturbation activity of three macrofaunal species and the presence of meiofauna affect the abundance and composition of benthic bacterial communities. Mar Environ Res. 2018;136:62–70.

    CAS 
    Article 

    Google Scholar 

  • Bonaglia S, Nascimento FJ, Bartoli M, Klawonn I, Bruchert V. Meiofauna increases bacterial denitrification in marine sediments. Nat Commun. 2014;5:5133.

    CAS 
    Article 

    Google Scholar 

  • Riemann F, Helmke E. Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Mar Ecol. 2002;23:93–113.

    CAS 
    Article 

    Google Scholar 

  • dos Santos GAP, Derycke S, Fonseca-Genevois VG, Coelho LCBB, Correia MTS, Moens T. Differential effects of food availability on population growth and fitness of three species of estuarine, bacterial-feeding nematodes. J Exp Mar Biol Ecol. 2008;355:27–40.

    Article 

    Google Scholar 

  • Zeppilli D, Sarrazin J, Leduc D, Arbizu PM, Fontaneto D, Fontanier C, et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers. 2015;45:505–35.

    Article 

    Google Scholar 

  • Moens T, Beninger PG. Meiofauna: an inconspicuous but important player in Mudflat ecology. In: Beninger P, editor. Mudflat ecology aquatic ecology series. 7. Switzerland: Springer; 2018.

  • Webb AL, Hughes KA, Grand MM, Lohan MC, Peck LS. Sources of elevated heavy metal concentrations in sediments and benthic marine invertebrates of the western Antarctic Peninsula. Sci Total Environ. 2020;698:134268.

    CAS 
    Article 

    Google Scholar 

  • Brown KM, Fraser KP, Barnes DK, Peck LS. Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia. 2004;141:121–9.

    Article 

    Google Scholar 

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.

    CAS 
    Article 

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    CAS 
    Article 

    Google Scholar 

  • Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34.

    Article 

    Google Scholar 

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.

    Article 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    Article 

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.

    Article 

    Google Scholar 

  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.

    CAS 
    Article 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    Article 

    Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. 2005;33:D34–8.

    CAS 
    Article 

    Google Scholar 

  • Wentworth CK. A scale of grade and class terms for clastic sediments. J Geol. 1922;30:377–92.

    Article 

    Google Scholar 

  • Dean WE. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J Sediment Res. 1974;44:242–8.

    CAS 

    Google Scholar 

  • Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett. 2007;5:9–12.

    CAS 
    Article 

    Google Scholar 

  • Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G. Fishing elevates variability in the abundance of exploited species. Nature. 2006;443:859–62.

    CAS 
    Article 

    Google Scholar 

  • Elbrecht V, Braukmann TWA, Ivanova NV, Prosser SWJ, Hajibabaei M, Wright M, et al. Validation of COI metabarcoding primers for terrestrial arthropods. Peer J. 2019;7:e7745–e.

    Article 

    Google Scholar 

  • Kirse A, Bourlat SJ, Langen K, Fonseca VG. Unearthing the potential of Soil eDNA metabarcoding—towards best practice advice for invertebrate biodiversity assessment. Front. Ecol. Evol. 2021;9:630560.

    Article 

    Google Scholar 

  • Zhang GK, Chain FJJ, Abbott CL, Cristescu ME. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evolut Appl. 2018;11:1901–14.

    CAS 
    Article 

    Google Scholar 

  • Marquina D, Andersson AF, Ronquist F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol Ecol Resour. 2019;19:90–104.

    CAS 
    Article 

    Google Scholar 

  • Leasi F, Sevigny JL, Laflamme EM, Artois T, Curini-Galletti M, de Jesus Navarrete A, et al. Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Commun Biol. 2018;1:112.

    Article 

    Google Scholar 

  • Giebner H, Langen K, Bourlat SJ, Kukowka S, Mayer C, Astrin JJ, et al. Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes. Mol Ecol Resour. 2020;20:1333–45.

    CAS 
    Article 

    Google Scholar 

  • Vanhove S, Lee HJ, Beghyn M, Gansbeke DV, Brockington S, Vincx M. The Metazoan Meiofauna in its biogeochemical environment: the case of an Antarctic coastal sediment. J Mar Biol Assoc UK. 1998;78:411–34.

    Article 

    Google Scholar 

  • Pasotti F, Saravia LA, De Troch M, Tarantelli MS, Sahade R, Vanreusel A. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat. PLoS ONE. 2015;10:e0141742.

    Article 

    Google Scholar 

  • Griffiths JR, Kadin M, Nascimento FJA, Tamelander T, Tornroos A, Bonaglia S, et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology. 2017;23:2179–96.

    Article 

    Google Scholar 

  • Virta L, Gammal J, Järnström M, Bernard G, Soininen J, Norkko J, et al. The diversity of benthic diatoms affects ecosystem productivity in heterogeneous coastal environments. Ecology. 2019;100:e02765.

    Article 

    Google Scholar 

  • Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci USA. 2016;113:E1516–25.

    CAS 
    Article 

    Google Scholar 

  • Forster D, Dunthorn M, Mahe F, Dolan JR, Audic S, Bass D, et al. Benthic protists: the under-charted majority. Fems Microbiol Ecol. 2016;92:fiw120.

    Article 

    Google Scholar 

  • Fonseca VG, Carvalho GR, Nichols B, Quince C, Johnson HF, Neill SP, et al. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Glob Ecol Biogeogr. 2014;23:1293–302.

    Article 

    Google Scholar 

  • O’Malley MA. The nineteenth century roots of ‘everything is everywhere’. Nat Rev Microbiol. 2007;5:647–51.

    Article 

    Google Scholar 

  • Pasotti F, Manini E, Giovannelli D, Wölfl A-C, Monien D, Verleyen E, et al. Antarctic shallow water benthos in an area of recent rapid glacier retreat. Mar Ecol. 2015;36:716–33.

    Article 

    Google Scholar 

  • Molari M, Janssen F, Vonnahme TR, Wenzhöfer F, Boetius A. The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130–4198 m depth). Biogeosciences. 2020;17:3203–22.

    CAS 
    Article 

    Google Scholar 

  • Signori CN, Thomas F, Enrich-Prast A, Pollery RCG, Sievert SM. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Front Microbiol. 2014;5:647.

    Article 

    Google Scholar 

  • Ozturk RC, Feyzioglu AM, Altinok I. Prokaryotic community and diversity in coastal surface waters along the Western Antarctic Peninsula. Pol Sci. 2021;31:100764.

    Article 

    Google Scholar 

  • Ghiglione JF, Murray AE. Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environ Microbiol. 2012;14:617–29.

    CAS 
    Article 

    Google Scholar 

  • Luria CM, Ducklow HW, Amaral-Zettler LA. Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula. Aquat Microbial Ecol. 2014;73:107–21.

    Article 

    Google Scholar 

  • Cao S, He J, Zhang F, Lin L, Gao Y, Zhou Q. Diversity and community structure of bacterioplankton in surface waters off the northern tip of the Antarctic Peninsula. Pol Res. 2019;38:3491.

    Article 

    Google Scholar 

  • Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016;10:979–89.

    Article 

    Google Scholar 

  • Kiko R, Werner I, Wittmann A. Osmotic and ionic regulation in response to salinity variations and cold resistance in the Arctic under-ice amphipod Apherusa glacialis. Pol Biol. 2009;32:393–8.

    Article 

    Google Scholar 

  • Zeppilli D, Leduc D, Fontanier C, Fontaneto D, Fuchs S, Gooday AJ, et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar Biodivers. 2018;48:35–71.

    Article 

    Google Scholar 

  • Arnosti C, Joergensen BB, Sagemann J, Thamdrup B. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser. 1998;165:59–70.

    CAS 
    Article 

    Google Scholar 

  • Fabiano M, Danovaro R. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the ross sea (Antarctica). Appl Environ Microbiol. 1998;64:3838–45.

    CAS 
    Article 

    Google Scholar 

  • Kujawinski EB, Longnecker K, Barott KL, Weber RJM, Kido Soule, MC. Microbial community structure affects marine dissolved organic matter composition. Front Mar Sci. 2016;3:45.

    Article 

    Google Scholar 

  • Barrett JE, Virginia RA, Hopkins DW, Aislabie J, Bargagli R, Bockheim JG, et al. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem. 2006;38:3019–34.

    CAS 
    Article 

    Google Scholar 

  • Ganzert L, Lipski A, Hubberten H-W, Wagner D. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. Fems Microbiol Ecol. 2011;76:476–91.

    CAS 
    Article 

    Google Scholar 

  • Rusch A, Huettel M, Reimers CE, Taghon GL, Fuller CM. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. Fems Microbiol Ecol. 2003;44:89–100.

    CAS 
    Article 

    Google Scholar 

  • Hemkemeyer M, Dohrmann AB, Christensen BT, Tebbe CC. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front Microbiol. 2018;9:149.

    Article 

    Google Scholar 

  • Giere O. Meiobenthology: the microscopic motile fauna of aquatic sediments. 2nd ed: Springer-Verlag Berlin Heidelberg; 2009. 527 p.

  • Fonseca VG, Carvalho GR, Sung W, Johnson HF, Power DM, Neill SP, et al. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun. 2010;1:98.

    Article 

    Google Scholar 

  • Pitcher RC, Lawton P, Ellis N, Smith SJ, Incze LS, Wei C-L, et al. Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems. J Appl Ecol. 2012;49:670–9.

    Article 

    Google Scholar 

  • Rose A, Ingels J, Raes M, Vanreusel A, Arbizu PM. Long-term iceshelf-covered meiobenthic communities of the Antarctic continental shelf resemble those of the deep sea. Heidelberg: Springer; 2014. 743–62 p.

  • Gonçalves-Araujo R, de Souza MS, Tavano VM, Garcia CAE. Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. J Mar Syst. 2015;142:1–15.

    Article 

    Google Scholar 

  • Learman DR, Henson MW, Thrash JC, Temperton B, Brannock PM, Santos SR, et al. Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure. Front Microbiol. 2016;7:284.

    Article 

    Google Scholar 

  • Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.

    CAS 
    Article 

    Google Scholar 

  • Rosli N, Leduc D, Rowden A, Probert P. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar Biodivers. 2017;48:13–34.

    Article 

    Google Scholar 

  • Ruff SE, Probandt D, Zinkann A-C, Iversen M, Klaas C, Schwabe L, et al. Indications for algae-degrading benthic microbial communities in deep-sea sediments along the Antarctic Polar Front. Deep Sea Res Part II: Top Stud Oceanogr. 2014;108:6–16.

    Article 

    Google Scholar 

  • El-Serehy HA, Al-Rasheid KA, Al-Misned FA, Al-Talasat AA, Gewik MM. Microbial-meiofaunal interrelationships in coastal sediments of the Red Sea. Saudi J Biol Sci. 2016;23:327–34.

    CAS 
    Article 

    Google Scholar 

  • Danovaro R, Company JB, Corinaldesi C, D’Onghia G, Galil B, Gambi C, et al. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE. 2010;5:e11832.

    Article 

    Google Scholar 

  • Mussmann M, Pjevac P, Kruger K, Dyksma S. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J. 2017;11:1276–81.

    CAS 
    Article 

    Google Scholar 

  • Hinger I, Pelikan C, Mußmann M. Role of the ubiquitous bacterial family Woeseiaceae for N2O production in marine sediments. Geophys Res Abstracts. 2019;21:17441.

    Google Scholar 

  • Hoffmann K, Bienhold C, Buttigieg PL, Knittel K, Laso-Pérez R, Rapp JZ, et al. Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. ISME J. 2020;14:1042–56.

    CAS 
    Article 

    Google Scholar 

  • Mare MF. A study of a marine benthic community with special reference to the microorganisms. J Mar Biol Assoc UK. 1942;25:517–54.

    Article 

    Google Scholar 

  • Bott TL, Borchardt MA. Grazing of protozoa, bacteria, and diatoms by Meiofauna in lotic epibenthic communities. J North Am Bentholog Soc. 1999;18:499–513.

    Article 

    Google Scholar 

  • Griffiths HJ. Antarctic marine biodiversity-what do we know about the distribution of life in the Southern Ocean? PLoS ONE. 2010;5:e11683.

    Article 

    Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, et al. The spatial structure of Antarctic biodiversity. Ecol Monogr. 2014;84:203–44.

    Article 

    Google Scholar 

  • Li L, Ma ZS. Species sorting and neutral theory analyses reveal archaeal and bacterial communities are assembled differently in hot springs. Front Bioeng Biotechnol. 2020;8:464.

    Article 

    Google Scholar 

  • Lee JE, Buckley HL, Etienne RS, Lear G. Both species sorting and neutral processes drive assembly of bacterial communities in aquatic microcosms. Fems Microbiol Ecol. 2013;86:288–302.

    CAS 
    Article 

    Google Scholar 

  • Gansfort B, Fontaneto D, Zhai M. Meiofauna as a model to test paradigms of ecological metacommunity theory. Hydrobiologia. 2020;847:2645–63.

    Article 

    Google Scholar 

  • Convey P, Peck LS. Antarctic environmental change and biological responses. Sci Adv. 2019;5:eaaz0888.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Large-scale forecasting of Heracleum sosnowskyi habitat suitability under the climate change on publicly available data

    Embracing ancient materials and 21st-century challenges