in

Metagenomic assembled plasmids of the human microbiome vary across disease cohorts

  • Dollive, S. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13, 60 (2012).

    Article 

    Google Scholar 

  • Pausan, M. R. Exploring the archaeome: Detection of archaeal signatures in the human body. Front. Microbiol 10, 2796 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clark, D. P., Pazdernik, N. J. & McGehee, M. R. Plasmids. in Molecular Biology, 712–748 (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-813288-3.00023-9.

  • Meinhardt, F., Schaffrath, R. & Larsen, M. Microbial linear plasmids. Appl. Microbiol. Biotechnol 47, 329–336 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lacroix, B. & Citovsky, V. Transfer of DNA from bacteria to eukaryotes. MBio 7, 00863–16 (2016).

    Article 

    Google Scholar 

  • Łobocka, M. B. Genome of bacteriophage P1. J. Bacteriol. 186, 7032–7068 (2004).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Spaziante, M., Oliva, A., Ceccarelli, G. & Venditti, M. What are the treatment options for resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria?. Expert Opin. Pharmacother. 21, 1781–1787 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Kopotsa, K., Osei Sekyere, J. & Mbelle, N. M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 1457, 61–91 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Ogilvie, L. A., Firouzmand, S. & Jones, B. V. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioengineered 3, 13–31 (2012).

    Article 

    Google Scholar 

  • Jørgensen, T. S., Xu, Z., Hansen, M. A., Sørensen, S. J. & Hansen, L. H. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS ONE 9, 87924 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kav, A. B. Insights into the bovine rumen plasmidome. Proc. Natl. Acad. Sci. 109, 5452–5457 (2012).

    CAS 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Brown Kav, A. Unravelling plasmidome distribution and interaction with its hosting microbiome. Environ. Microbiol. 22, 32–44 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral dark matter. Virus Res. 239, 136–142 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host. Microbe 26, 764-778.e5 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sutton, T. D. S., Clooney, A. G. & Hill, C. Giant oversights in the human gut virome. Gut 69, 1357–1358 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Zuo, T. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649-662.e20 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tamminen, M., Virta, M., Fani, R. & Fondi, M. Large-scale analysis of plasmid relationships through gene-sharing networks. Mol. Biol. Evol. 29, 1225–1240 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Angelakis, E. et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect 27, 14–21 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mackie, R. I. et al. Ecology of uncultivated oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl. Environ. Microbiol. 69, 6808–6815 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Konikoff, T. & Gophna, U. Oscillospira: A central, enigmatic component of the human gut microbiota. Trends Microbiol. 24, 523–524 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, Y. et al. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 10, (2020).

  • Bushman, F. D. Multi-omic analysis of the interaction between clostridioides difficile infection and pediatric inflammatory bowel disease. Cell Host Microbe 28, 422–433 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Wills, E. S. et al. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS ONE 9, e90981 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Halfvarson, J. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pascal, V. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nitzan, O., Elias, M., Chazan, B., Raz, R. & Saliba, W. Clostridium difficile and inflammatory bowel disease: Role in pathogenesis and implications in treatment. World J. Gastroenterol. 19, 7577–7585 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clayton, E. M. et al. The vexed relationship between Clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. Am. J. Gastroenterol. 104, 1162–1169 (2009).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Tariq, R. et al. Efficacy of fecal microbiota transplantation for recurrent C.

  • Marcella, C. Systematic review: The global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment. Pharmacol. Ther. https://doi.org/10.1111/apt.16148 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527-541.e5 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fraser-Liggett, C. Metagenomic analysis of the structure and function of the human gut microbiota in Crohn’s disease. Nat. Preced. [Internet] (2010).

  • Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut (2017).

  • Mira-Pascual, L. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 50, 167–179 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Rampelli, S. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5, (2020).

  • Monaghan, T. M. Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome. Gut Microbes 12, 1752605 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chu, D. M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • MD, D. G., K, F., C, C. & EL, C. Whole genome metagenomic analysis of the gut microbiome of differently fed infants identifies differences in microbial composition and functional genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort. Hum. Microbiome J. 12, (2019).

  • Qian, Y. et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain J. Neurol. 143, 2474–2489 (2020).

    Article 

    Google Scholar 

  • Kao, D. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: A randomized clinical trial. JAMA 318, 1985–1993 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article 
    CAS 

    Google Scholar 

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guerin, E. et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. (2018). https://doi.org/10.1101/295642.

  • Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edgar, R. C. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinform. 8, 18 (2007).

    Article 
    CAS 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (2019). Accessed Aug 2021–Mar 2022.

  • Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).

    Article 

    Google Scholar 

  • Jari Oksanen et al. vegan: Community Ecology Package. (2019).

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. (2019).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Flor M. chorddiag: Interactive Chord Diagrams [Internet]. (2020).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hulsen, T., Vlieg, J. & Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 9, (2008).

  • Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinform. Oxf. Engl. 21, 537–539 (2005).

    CAS 
    Article 

    Google Scholar 

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinform. Oxf. Engl. 30, 2068–2069 (2014).

    CAS 
    Article 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the case of Arctic sea ice breakup

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler