Vanwonterghem I, Webster NS. Coral reef microorganisms in a changing climate. iScience. 2020;23:100972.
Google Scholar
Voolstra CR, Ziegler M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. BioEssays. 2020;42:e2000004.
Google Scholar
Goulet TL, Erill I, Ascunce MS, Finley SJ, Javan GT. Conceptualization of the holobiont paradigm as it pertains to corals. Front Physiol. 2020;11:566968.
Google Scholar
McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Response of coral-associated bacterial communities to local and global stressor. Front Marine Sci. 2017;4:262.
Google Scholar
Morrow KM, Moss AG, Chadwick NE, Liles MR. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol. 2012;78:6438–49.
Google Scholar
O’Brien PA, Smith HA, Fallon S, Fabricius K, Willis BL, Morrow KM, et al. Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp. Front Microbiol. 2018;9:2621.
Google Scholar
Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs. 2001;20:85–91.
Google Scholar
Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series. 2002;243:1–10.
Google Scholar
Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.
Google Scholar
van Oppen MJ, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. 2019;17:557–67.
Google Scholar
Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Reports. 2019;9:1–13.
Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627–36.
Google Scholar
Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Ann Rev Microbiol. 2016;70:317–40.
Google Scholar
Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol. 2021;224:jeb239319.
Google Scholar
Stocker, TF, Qin, D, Plattner, GK, Alexander, LV, Allen, SK, Bindoff, NL, et al. (2013). Technical summary. In: Climate change 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker, TF, Qin, D, Plattner, G-K, Tignor,M, Allen, SK, Doschung, J, Nauels, A, Xia, Y, Bex, V,Midgley, PM (Eds.)]. Cambridge University Press, pp. 33–115.
Bindoff, NL, Cheung, WW, Kairo, JG, Arístegui, J, Guinder, VA, Hallberg, R, et al. (2019). Changing ocean, marine ecosystems, and dependent communities. In: IPCC special report on the ocean and cryosphere in a changing climate [Pörtner, H-O, Roberts, DC, Masson-Delmotte, V, Zhai, P, Tignor, M, Poloczanska, E, Mintenbeck, K, Alegría, A, Nicolai, M, Okem, A, Petzold, J, Rama, B, Weyer NM (eds.)]. In press. p. 477–587.
Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral reef ecosystems under climate change and ocean acidification. Front Marine Sci. 2017;4:158.
Google Scholar
Yu T, Chen Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Sci Total Environ. 2019;655:865–79.
Google Scholar
Gattuso JP, Magnan A, Billé R, Cheung WW, Howes EL, Joos F, et al. OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349:aac4722.
Google Scholar
Kroeker KJ, Kordas RL, Crim RN, Singh GG. Response to technical comment on ‘meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms’. Ecology Lett. 2011;14:E1–E2.
Google Scholar
Ingrosso G, Abbiati M, Badalamenti F, Bavestrello G, Belmonte G, Cannas R, et al. Mediterranean Bioconstructions Along the Italian Coast. Adv Marine Biology. 2018;79:61–136.
Google Scholar
Hassenrück C, Fink A, Lichtschlag A, Tegetmeyer HE, de Beer D, Ramette A. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology. 2016;92:fiw027.
Google Scholar
Tangherlini M, Corinaldesi C, Ape F, Greco S, Romeo T, Andaloro F, et al. Ocean acidification induces changes in virus-host relationships in Mediterranean benthic ecosystems. Microorganisms. 2021;9:769.
Google Scholar
Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecology Evolut. 2010;25:250–60.
Google Scholar
Fantazzini P, Mengoli S, Pasquini L, Bortolotti V, Brizi L, Mariani M, et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat Commun. 2015;6:1–7.
Google Scholar
Goffredo S, Prada F, Caroselli E, Capaccioni B, Zaccanti F, Pasquini L, et al. Biomineralization control related to population density under ocean acidification. Nat Clim Change. 2014;4:593–7.
Google Scholar
Teixidó N, Caroselli E, Alliouane S, Ceccarelli C, Comeau S, Gattuso JP, et al. Ocean acidification causes variable trait-shifts in a coral species. Global Change Biology. 2020;26:6813–30.
Google Scholar
Kenkel CD, Moya A, Strahl J, Humphrey C, Bay LK. Functional genomic analysis of corals from natural CO2‐seeps reveals core molecular responses involved in acclimatization to ocean acidification. Global Change Biology. 2018;24:158–71.
Google Scholar
Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. The ISME J. 2015;9:894–908.
Google Scholar
Biagi E, Caroselli E, Barone M, Pezzimenti M, Teixido N, Soverini M, et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents. Sci Total Environ. 2020;724:138048.
Google Scholar
Shore A, Day RD, Stewart JA, Burge CA. Dichotomy between regulation of coral bacterial communities and calcification physiology under ocean acidification conditions. Appl Environ Microbiol. 2021;87:e02189–20.
Google Scholar
Marcelino VR, Morrow KM, van Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Mol Ecology. 2017;26:5344–57.
Google Scholar
Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F. Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Marine Biology. 2007;152:351–61.
Google Scholar
Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci Reports. 2016;6:1–9.
Klein, SG, Geraldi, NR, Anton, A, Schmidt‐Roach, S, Ziegler, M, Cziesielski, MJ, et al. (2021). Projecting coral responses to intensifying marine heatwaves under ocean acidification. Global change biology, https://doi.org/10.1111/gcb.15818. Advance online publication.
Okazaki RR, Towle EK, van Hooidonk R, Mor C, Winter RN, Piggot AM, et al. Species‐specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Global Change Biology. 2017;23:1023–35.
Google Scholar
Maor-Landaw K, Ben-Asher HW, Karako-Lampert S, Salmon-Divon M, Prada F, Caroselli E, et al. Mediterranean versus Red sea corals facing climate change, a transcriptome analysis. Sci Reports. 2017;7:1–8.
Prada F, Caroselli E, Mengoli S, Brizi L, Fantazzini P, Capaccioni B, et al. Ocean warming and acidification synergistically increase coral mortality. Sci Reports. 2017;7:40842.
Google Scholar
Chen, D, Rojas, M, Samset, BH, Cobb, K, Diongue Niang, A, Edwards, P, et al. (2021). Framing, Context, and Methods. In: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V, Zhai, P, Pirani, A, Connors, AL, Péan, C, Berger, S, Caud, N, Chen, Y, Goldfarb, L, Gomis, MI, Huang, M, Leitzell, K, Lonnoy, E, Matthews, JBR, Maycock, TK, Waterfield, T, Yelekçi, O, Yu, R, & Zhou B (eds.)]. In Press.
Wall, M, Prada, F, Fietzke, J, Caroselli, E, Dubinsky, Z, Brizi, L, et al. (2019). Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Frontiers in marine science, 699.
Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92.
Google Scholar
Sweet MJ, Croquer A, Bythell JC. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals. PLoS One. 2011;6:e21195.
Google Scholar
Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems. 2016;1:e00143–16.
Google Scholar
Rubio-Portillo E, Santos F, Martínez-García M, de Los Ríos A, Ascaso C, Souza-Egipsy V, et al. Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coral Oculina patagonica. Environ Microbiol. 2016;18:4564–78.
Google Scholar
Palladino G, Biagi E, Rampelli S, Musella M, D’Amico F, Turroni S, et al. Seasonal changes in microbial communities associated with the jewel anemone Corynactis viridis. Front Marine Sci. 2021a;8:57.
Google Scholar
Palladino G, Rampelli S, Scicchitano D, Musella M, Quero GM, Prada F, et al. Impact of marine aquaculture on the microbiome associated with nearby holobionts: the case of Patella caerulea living in proximity of sea bream aquaculture cages. Microorganisms. 2021b;9:455.
Google Scholar
Campbell AM, Fleisher J, Sinigalliano C, White JR, Lopez JV. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast F lorida. MicrobiologyOpen. 2015;4:390–408.
Google Scholar
Sadik NJ, Uprety S, Nalweyiso A, Kiggundu N, Banadda NE, Shisler JL, et al. Quantification of multiple waterborne pathogens in drinking water, drainage channels, and surface water in Kampala, Uganda, during seasonal variation. GeoHealth. 2017;1:258–69.
Google Scholar
Su HC, Liu YS, Pan CG, Chen J, He LY, Ying GG. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018;616:453–61.
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
Google Scholar
Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT, Stewart FJ, et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PloS One. 2013;8:e76096.
Google Scholar
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics. 2012;13:1–7.
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:1091.
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.
Google Scholar
Toolkit, P (2019). Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad Institute.
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Google Scholar
Andrews, S (2010). Fastqc: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Liu CM, Li D, Sadakane K, Luo R, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
Google Scholar
West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 2018;28:569–80.
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Google Scholar
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.
Google Scholar
Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res. 2013;41:e3.
Google Scholar
Culhane AC, Thioulouse J, Perrière G, Higgins DG. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics. 2005;21:2789–90.
Google Scholar
Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E. Changes in coral microbial communities in response to a natural pH gradient. ISME J. 2012;6:1775–85.
Google Scholar
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biology Rev. 2000;64:515–47.
Google Scholar
Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, et al. Diversity and evolution of sensor histidine kinases in eukaryotes. Genome Biology Evolut. 2019;11:86–108.
Google Scholar
Campanacci V, Nurizzo D, Spinelli S, Valencia C, Tegoni M, Cambillau C. The crystal structure of the Escherichia coli lipocalin Blc suggests a possible role in phospholipid binding. FEBS Lett. 2004;562:183–8.
Google Scholar
Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol. 2020;104:1357–70.
Google Scholar
Pérez E, Rubio MB, Cardoza RE, Gutiérrez S, Bettiol W, Monte E, et al. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei. Front Microbiol. 2015;6:1181.
Google Scholar
Ohki T, Wakitani Y, Takeo M, Yasuhira K, Shibata N, Higuchi Y, et al. Mutational analysis of 6-aminohexanoate-dimer hydrolase: relationship between nylon oligomer hydrolytic and esterolytic activities. FEBS Lett. 2006;580:5054–8.
Google Scholar
Velupillaimani D, Muthaiyan A. Potential of Bacillus subtilis from marine environment to degrade aromatic hydrocarbons. Environ Sustainability. 2019;2:381–9.
Google Scholar
Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conservation Physiol. 2019;7:coz062.
Google Scholar
Godefroid M, Dupont S, Metian M, Hédouin L. Two decades of seawater acidification experiments on tropical scleractinian corals: Overview, meta-analysis and perspectives. Marine Pollut Bull. 2022;178:113552.
Google Scholar
Goffredo S, Arnone S, Zaccanti F. Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Marine Ecology Progress Series. 2002;229:83–94.
Google Scholar
Luo, D, Wang, X, Feng, X, Tian, M, Wang, S, Tang, SL, et al. (2021). Population differentiation of Rhodobacteraceae along with coral compartments. ISME J. https://doi.org/10.1038/s41396-021-01009-6. Advance online publication.
Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecology. 2009;67:371–80.
Google Scholar
Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:4921.
Google Scholar
Glazier A, Herrera S, Weinnig A, Kurman M, Gómez CE, Cordes E. Regulation of ion transport and energy metabolism enables certain coral genotypes to maintain calcification under experimental ocean acidification. Mol Ecology. 2020;29:1657–73.
Google Scholar
Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zoology. 2020;17:1–23.
Google Scholar
Nikolic N. Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system. Curr Genet. 2019;65:133–8.
Google Scholar
Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramírez JD, García-Carmona F, Gandía-Herrero F. First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. MBio. 2019;10:e00345–19.
Google Scholar
Naveed M, Tariq K, Sadia H, Ahmad H, Mumtaz AS. The life history of pyrroloquinoline quinone (PQQ): a versatile molecule with novel impacts on living systems. Int J Mol Biology Open Access. 2016;1:29–46.
Google Scholar
Aguilar C, Raina JB, Fôret S, Hayward DC, Lapeyre B, Bourne DG, et al. Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics. 2019;20:1–13.
Google Scholar
Bury-Moné S, Nomane Y, Reymond N, Barbet R, Jacquet E, Imbeaud S, et al. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genetics. 2009;5:e1000651.
Google Scholar
Chilton SS, Falbel TG, Hromada S, Burton BM. A conserved metal binding motif in the Bacillus subtilis competence protein ComFA enhances transformation. J Bacteriol. 2017;199:e00272–17.
Google Scholar
Johnsen AR, Kroer N. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiology Ecology. 2007;59:718–28.
Google Scholar
Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol. 2005;187:304–19.
Google Scholar
Ma C, Sim S, Shi W, Du L, Xing D, Zhang Y. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol Lett. 2010;303:33–40.
Google Scholar
Toesca I, Perard C, Bouvier J, Gutierrez C, Conter A. The transcriptional activator NhaR is responsible for the osmotic induction of osmCp1, a promoter of the stress-inducible gene osmC in Escherichia coli. Microbiology. 2001;147:2795–803.
Google Scholar
Benner R, Kaiser K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnology Oceanogr. 2003;48:118–28.
Google Scholar
Mills LA, McCormick AJ, Lea-Smith DJ. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Reports. 2020;40:BSR20193325.
Google Scholar
Labare MP, Bays JT, Butkus MA, Snyder-Leiby T, Smith A, Goldstein A, et al. The effects of elevated carbon dioxide levels on a Vibrio sp. isolated from the deep-sea. Environ Sci Pollut Res Int. 2010;17:1009–15.
Google Scholar
Sogin EM, Putnam HM, Anderson PE, Gates RD. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics. 2016;12:71.
Google Scholar
Yang Y, Kadim MI, Khoo WJ, Zheng Q, Setyawati MI, Shin YJ, et al. Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int J Food Microbiol. 2014;191:24–31.
Google Scholar
Diricks M, Gutmann A, Debacker S, Dewitte G, Nidetzky B, Desmet T. Sequence determinants of nucleotide binding in Sucrose Synthase: improving the affinity of a bacterial Sucrose Synthase for UDP by introducing plant residues. Protein Eng Design Select. 2017;30:143–50.
Google Scholar
De Carvalho CC, Caramujo MJ. The various roles of fatty acids. Molecules. 2018;23:2583.
Google Scholar
Campanacci V, Bishop RE, Blangy S, Tegoni M, Cambillau C. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett. 2006;580:4877–83.
Google Scholar
Zawadzka-Skomiał J, Markiewicz Z, Nguyen-Disteche M, Devreese B, Frere JM, Terrak M. Characterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes. J Bacteriol. 2006;188:1875–81.
Google Scholar
Wannicke N, Frey C, Law CS, Voss M. The response of the marine nitrogen cycle to ocean acidification. Global Change Biology. 2018;24:5031–43.
Google Scholar
Burnat M, Herrero A, Flores E. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA. 2014;111:3823–8.
Google Scholar
Zhang H, Yang C. Arginine and nitrogen mobilization in cyanobacteria. Mol Microbiol. 2019;111:863–7.
Google Scholar
Law AM, Lai SW, Tavares J, Kimber MS. The structural basis of beta-peptide-specific cleavage by the serine protease cyanophycinase. J Mol Biol. 2009;392:393–404.
Google Scholar
Flores E, Arévalo S, Burnat M. Cyanophycin and arginine metabolism in cyanobacteria. Algal Res. 2019;42:101577.
Google Scholar
Bednarz VN, Van De Water JA, Grover R, Maguer JF, Fine M, Ferrier-Pagès C. Unravelling the importance of diazotrophy in corals–combined assessment of nitrogen assimilation, diazotrophic community and natural stable isotope signatures. Front Microbiol. 2021;12:1638.
Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.
Google Scholar
Béraud E, Gevaert F, Rottier C, Ferrier-Pagès C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J Exp Biol. 2013;216:2665–74.
Google Scholar
Tong H, Cai L, Zhou G, Zhang W, Huang H, Qian PY. Correlations between prokaryotic microbes and stress-resistant algae in different corals subjected to environmental stress in Hong Kong. Front Microbiol. 2020;11:686.
Google Scholar
Pogoreutz C, Rädecker N, Cardenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biol. 2017;23:3838–48.
Google Scholar
Zhou Y, Tang K, Wang P, Wang W, Wang Y, Wang X. Identification of bacteria-derived urease in the coral gastric cavity. Sci China Earth Sci. 2020;63:1553–63.
Google Scholar
Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Rottier C, Wright A, et al. Enhancement of coral calcification via the interplay of nickel and urease. Aquatic Toxicol. 2018;200:247–56.
Google Scholar
Source: Ecology - nature.com