in

Microbial community functioning during plant litter decomposition

  • Kalbitz, K. & Kaiser, K. Contribution of dissolved organic matter to carbon storage in forest mineral soils. J. Plant Nutr. Soil Sci. 171, 52–60 (2008).

    CAS 

    Google Scholar 

  • Michalzik, B. et al. Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66, 241–264 (2003).

    CAS 

    Google Scholar 

  • Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).

    ADS 

    Google Scholar 

  • Roth, V.-N. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. https://doi.org/10.1038/s41561-019-0417-4 (2019).

    Article 

    Google Scholar 

  • Jones, O. A. H. et al. Metabolomics and its use in ecology: Metabolomics in ecology. Austral Ecol. 38, 713–720 (2013).

    Google Scholar 

  • Gołębiewski, M. et al. Rapid microbial community changes during initial stages of pine litter decomposition. Microb. Ecol. 77, 56–75 (2019).

    PubMed 

    Google Scholar 

  • Chomel, M. et al. Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. J. Ecol. 104, 1527–1541 (2016).

    Google Scholar 

  • Purahong, W., Wubet, T., Krüger, D. & Buscot, F. Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME J. 12, 289–295 (2018).

    Google Scholar 

  • Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    PubMed 

    Google Scholar 

  • Wu, Y., Zeng, J., Zhu, Q., Zhang, Z. & Lin, X. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci. Rep. 7, 40093 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffiths, R. I. et al. The bacterial biogeography of British soils: Mapping soil bacteria. Environ. Microbiol. 13, 1642–1654 (2011).

    PubMed 

    Google Scholar 

  • Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Büttner, H. et al. Bacterial endosymbionts protect beneficial soil fungus from nematode attack. Proc. Natl. Acad. Sci. USA 118, e2110669118 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lucas, J. M., Gora, E., Salzberg, A. & Kaspari, M. Antibiotics as chemical warfare across multiple taxonomic domains and trophic levels in brown food webs. Proc. R. Soc. B 286, 20191536 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldbeck, O. et al. Establishing recombinant production of pediocin PA-1 in Corynebacterium glutamicum. Metab. Eng. 68, 34–45 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X. et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front. Microbiol. 9, 1234 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Andrilli, J., Junker, J. R., Smith, H. J., Scholl, E. A. & Foreman, C. M. DOM composition alters ecosystem function during microbial processing of isolated sources. Biogeochemistry 142, 281–298 (2019).

    Google Scholar 

  • Benk, S. A. et al. Fueling diversity in the subsurface: Composition and age of dissolved organic matter in the critical zone. Front. Earth Sci. 7, 296 (2019).

    ADS 

    Google Scholar 

  • Marschner, P., Umar, S. & Baumann, K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biol. Biochem. 43, 445–451 (2011).

    CAS 

    Google Scholar 

  • Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K. & Vivanco, J. M. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol. 198, 264–273 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Kohlhepp, B. et al. Pedological and hydrogeological setting and subsurface flow structure of the carbonate-rock CZE Hainich in western Thuringia, Germany. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-2016-374 (2016).

  • Dittmar, T., Koch, B. P., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. 6, 230–235 (2008).

    CAS 

    Google Scholar 

  • Simon, C., Roth, V.-N., Dittmar, T. & Gleixner, G. Molecular signals of heterogeneous terrestrial environments identified in dissolved organic matter: A comparative analysis of orbitrap and ion cyclotron resonance mass spectrometers. Front. Earth Sci. 6, 138 (2018).

    ADS 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, S. et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol. Ecol. 94, 10 (2018).

    Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taubert, M. et al. Tracking active groundwater microbes with D 2 O labelling to understand their ecosystem function: Tracking active groundwater microbes. Environ. Microbiol. 20, 369–384 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lohmann, P. et al. Function is what counts: How microbial community complexity affects species, proteome and pathway coverage in metaproteomics. Expert Rev. Proteomics 17, 163–173 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Starke, R. et al. Candidate brocadiales dominates C, N and S cycling in anoxic groundwater of a pristine limestone-fracture aquifer. J. Proteomics 152, 153–160 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

  • Oksanen, J. et al. vegan: Community Ecology Package (Springer, 2018).

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 

  • Zoppi, J., Guillaume, J.-F., Neunlist, M. & Chaffron, S. MiBiOmics: an interactive web application for multi-omics data exploration and integration. BMC Bioinform. 22, 6 (2021).

    Google Scholar 

  • Adler, D. & Murdoch, D. rgl: 3D Visualization Using OpenGL (Springer, 2019).

    Google Scholar 

  • Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data: Fig. 1. Bioinformatics 31, 2882–2884 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fath, M. J. & Kolter, R. ABC transporters: Bacterial exporters. Microbiol. Rev. 57, 995 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waters, C. M. & Bassler, B. L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 3, 2–20 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Polturak, G. et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. PNAS 114, 9062–9067 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mille-Lindblom, C. & Tranvik, L. J. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 45, 173–182 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Chopra, I. & Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reading, C. & Cole, M. Clavulanic acid: A beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šnajdr, J. et al. Transformation of Quercus petraea litter: Successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition: Transformation of Quercus petraea litter. FEMS Microbiol. Ecol. 75, 291–303 (2011).

    PubMed 

    Google Scholar 

  • Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).

    PubMed 

    Google Scholar 

  • Buresova, A. et al. Succession of microbial decomposers is determined by litter type, but site conditions drive decomposition rates. Appl. Environ. Microbiol. 85, e01760-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hopwood, D. A. Streptomyces in Nature and Medicine: The Antibiotic Makers (Oxford University Press, 2007).

    Google Scholar 

  • Anaya-López, J. L., López-Meza, J. E. & Ochoa-Zarzosa, A. Bacterial resistance to cationic antimicrobial peptides. Crit. Rev. Microbiol. 39, 180–195 (2013).

    PubMed 

    Google Scholar 

  • Lindner, K. R., Bonner, D. P. & Koster, W. H. Monobactams. Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2000). https://doi.org/10.1002/0471238961.1315141512091404.a01.

    Book 

    Google Scholar 

  • Eustáquio, A. S. et al. Novobiocin biosynthesis: Inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Arch. Microbiol. 180, 25–32 (2003).

    PubMed 

    Google Scholar 

  • Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).

    CAS 

    Google Scholar 

  • Taubert, M., Stähly, J., Kolb, S. & Küsel, K. Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. PLoS ONE 14, e0212937 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wallenstein, M. D., Hess, A. M., Lewis, M. R., Steltzer, H. & Ayres, E. Decomposition of aspen leaf litter results in unique metabolomes when decomposed under different tree species. Soil Biol. Biochem. 42, 484–490 (2010).

    CAS 

    Google Scholar 

  • Backlund, I. et al. Extractive profiles of different lodgepole pine (Pinus contorta) fractions grown under a direct seeding-based silvicultural regime. Ind. Crops Prod. 58, 220–229 (2014).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

    Individualism versus collective movement during travel