Vareda, J. P., Valente, A. J. M. & Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manage. 246, 101–118 (2019).
Google Scholar
Chanamé, F., Custodio, M., Poma-Chávez, C. & Huamán, A. Nutrient concentrations and trophic state of three Andean lakes from Junín, Perú. Rev. Ambient Agua 15, 1–9 (2020).
Bhardwaj, R., Gupta, A. & Garg, J. K. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 31, 52–66 (2017).
Custodio, M. et al. Human risk from exposure to heavy metals and arsenic in water from rivers with mining influence in the Central Andes of Peru. Water (Switzerland) 12, 1–20 (2020).
Arisekar, U., Jeya, R., Shalini, R. & Jeyasekaran, G. Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Mar. Pollut. Bull. 159, 111496 (2020).
Google Scholar
Chabukdhara, M. & Nema, A. K. Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere 87, 945–953 (2012).
Google Scholar
Chai, L. et al. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment. Environ. Sci. Pollut. Res. 24, 874–885 (2017).
Google Scholar
Liu, T. T. & Yang, H. Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu. FEMS Microbiol. Ecol. 96, 1–11 (2020).
Google Scholar
Custodio, M. et al. Evaluation of surface sediment quality in rivers with fish farming potential (Peru) using indicators of contamination, accumulation and ecological risk of heavy metals and arsenic. J. Ecol. Eng. 22, 78–87 (2021).
Zhang, Z. et al. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci. Total Environ. 645, 235–243 (2018).
Google Scholar
Sojka, M., Jaskula, J. & Siepak, M. Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water (Switzerland) 11, 1–20 (2018).
Xu, Z., Te, S. H., Xu, C., He, Y. & Gin, K. Y. H. Variations of bacterial community composition and functions in an estuary reservoir during spring and summer alternation. Toxins (Basel) 10, 1–22 (2018).
Google Scholar
Xiao, F. et al. The impact of anthropogenic disturbance on bacterioplankton communities during the construction of Donghu Tunnel (Wuhan, China). Microb. Ecol. 77, 277–287 (2019).
Google Scholar
Wang, B. et al. Bacterial community responses to tourism development in the Xixi National Wetland Park, China. Sci. Total Environ. 720, 137570 (2020).
Google Scholar
Deng, W. et al. Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. J. Environ. Manage. 257, 109980 (2020).
Google Scholar
Gubelit, Y. et al. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota. Sci. Total Environ. 550, 806–819 (2016).
Google Scholar
Wang, J. et al. Contribution of heavy metal in driving microbial distribution in a eutrophic river. Sci. Total Environ. 712, 136295 (2020).
Google Scholar
Liao, H. et al. Profiling microbial communities in a watershed undergoing intensive anthropogenic activities. Sci. Total Environ. 647, 1137–1147 (2019).
Google Scholar
Liu, J. et al. Spatiotemporal dynamics of the archaeal community in coastal sediments: Assembly process and co-occurrence relationship. ISME J. 14, 1463–1478 (2020).
Google Scholar
Liao, H., Yen, J. Y., Guan, Y., Ke, D. & Liu, C. Differential responses of stream water and bed sediment microbial communities to watershed degradation. Environ. Int. 134, 105198 (2020).
Google Scholar
Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2012).
Google Scholar
Ligi, T. et al. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecol. Eng. 72, 56–66 (2014).
Wilmes, P. et al. Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME J. 3, 266–270 (2009).
Google Scholar
Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat. Methods. 4, 495–500 (2007).
Google Scholar
Yuan, X., Zhang, L., Li, J., Wang, C. & Ji, J. Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China. CATENA 119, 52–60 (2014).
Google Scholar
Lin, Q., Liu, E., Zhang, E., Li, K. & Shen, J. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. CATENA 145, 193–203 (2016).
Google Scholar
Guo, T. et al. Distribution of arsenic and its biotransformation genes in sediments from the East China Sea. Environ. Pollut. 253, 949–958 (2019).
Google Scholar
Taylor, S. R. & Mclennan, S. M. The geochemical the continental evolution crust. Rev. Miner. Geochem. 33, 241–265 (1995).
Lastauskienė, E. et al. The impact of intensive fish farming on pond sediment microbiome and antibiotic resistance gene composition. Front. Vet. Sci. 8, 1–12 (2021).
Ragab, S., Sikaily, A. E., Nemr, A. E. & Sea, R. Concentrations and sources of pesticides and PCBs in surficial sediments of the Red Sea coast, Egypt. Egypt. J. Aquat. Res. 42, 365–374 (2016).
Kavita, V. & Pandey, J. Heavy metal accumulation in surface sediments of the Ganga River (India): Speciation, fractionation, toxicity, and risk assessment. Environ. Monit. Assess. 191, 20 (2019).
Haghnazar, H. et al. Chemosphere Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. 285, (2021).
Perera, P. C. T., Sundarabarathy, T. V., Sivananthawerl, T., Kodithuwakku, S. P. & Edirisinghe, U. Arsenic and cadmium contamination in water, sediments and fish is a consequence of paddy cultivation: Evidence of river pollution in Sri Lanka. Achiev. Life Sci. 10, 144–160 (2016).
Kalantzi, I., Rico, A., Mylona, K., Pergantis, S. A. & Tsapakis, M. Fish farming, metals and antibiotics in the eastern Mediterranean Sea: Is there a threat to sediment wildlife?. Sci. Total Environ. 764, 142843 (2021).
Google Scholar
Monroy, M., Maceda-Veiga, A. & de Sostoa, A. Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Sci. Total Environ. 487, 233–244 (2014).
Google Scholar
Rodbell, D. T., Delman, E., Abbott, M., Besonen, M. & Tapia, P. The heavy metal contamination of Lake Junín National Reserve, Peru: An unintended consequence of the juxtaposition of hydroelectricity and mining. GSA Today 24, 4–10 (2014).
Ni, C. et al. High concentrations of bioavailable heavy metals impact freshwater sediment microbial communities. Ann. Microbiol. 66, 1003–1012 (2016).
Google Scholar
Huang, W. et al. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network. Microbiologyopen https://doi.org/10.1002/mbo3.644 (2018).
Google Scholar
Abia, A. L. K., Alisoltani, A., Keshri, J. & Ubomba-Jaswa, E. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci. Total Environ. 616–617, 326–334 (2018).
Google Scholar
Guo, X. et al. Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze Estuary and its coastal area, China. Sci. Total Environ. 648, 306–314 (2019).
Google Scholar
Betiku, O. C. et al. Evaluation of microbial diversity of three recreational water bodies using 16S rRNA metagenomic approach. Sci. Total Environ. 771, 144773 (2021).
Google Scholar
Zhang, T. et al. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci. Total Environ. 728, 138615 (2020).
Google Scholar
Shen, M. et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in Plateau Lakes. Front. Microbiol. 10, 1–15 (2019).
Quero, G. M., Cassin, D., Botter, M., Perini, L. & Luna, G. M. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front. Microbiol. 6, 1–15 (2015).
Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).
Google Scholar
Long, Y. et al. The response of microbial community structure and sediment properties to anthropogenic activities in Caohai wetland sediments. Ecotoxicol. Environ. Saf. 211, 111936 (2021).
Google Scholar
Yao, X., Zhang, J., Tian, L. & Guo, J. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Braz. J. Microbiol. 48, 71–78 (2017).
Google Scholar
Hur, M. & Park, S. J. Identification of microbial profiles in heavy-metal-contaminated soil from full-length 16s rRNA reads sequenced by a pacbio system. Microorganisms 7, 25 (2019).
Zhuang, M., Sanganyado, E., Li, P. & Liu, W. Distribution of microbial communities in metal-contaminated nearshore sediment from Eastern Guangdong, China. Environ. Pollut. 250, 482–492 (2019).
Google Scholar
Gu, Y. et al. Degradation shaped bacterial and archaeal communities with predictable taxa and their association patterns in Zoige wetland at Tibet plateau. Sci. Rep. 8, 1–11 (2018).
Google Scholar
Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 25 (2011).
Hu, A. et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ. Microbiol. 19, 4993–5009 (2017).
Google Scholar
Ren, Z. et al. Taxonomic and functional differences between microbial communities in Qinghai Lake and its input streams. Front. Microbiol. 8, 1–14 (2017).
Yin, X. et al. Cadmium isotope constraints on heavy metal sources in a riverine system impacted by multiple anthropogenic activities. Sci. Total Environ. 750, 141233 (2021).
Google Scholar
Yan, C. et al. Integrating high-throughput sequencing and metagenome analysis to reveal the characteristic and resistance mechanism of microbial community in metal contaminated sediments. Sci. Total Environ. 707, 136116 (2020).
Google Scholar
Coclet, C. et al. Trace metal contamination impacts predicted functions more than structure of marine prokaryotic biofilm communities in an anthropized coastal area. Front. Microbiol. 12, 1–16 (2021).
Esri Inc. ArcMap 10.8. Esri Inc. (2020). https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.
Avalos, G. et al. Climate Change in the Mantaro River Basin (MINEN, 2013).
APHA. Standard methods for the examination of water and wastewater. Stand. Methods 541, 25 (2012).
Singh, H., Pandey, R., Singh, S. K. & Shukla, D. N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 7, 4133–4149 (2017).
Google Scholar
El-Amier, Y. A., Elnaggar, A. A. & El-Alfy, M. Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake, Egypt. Egypt. J. Basic Appl. Sci. https://doi.org/10.1016/j.ejbas.2016.09.005 (2016).
Google Scholar
Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724 (1999).
Google Scholar
Custodio, M. et al. Metagenomic data on the composition of bacterial communities in lake environment sediments for fish farming by next generation Illumina sequencing. Data Br. 32, 106228 (2020).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, 25 (2014).
Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
Google Scholar
Gan, Y. et al. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China. Chemosphere 184, 1388–1395 (2017).
Google Scholar
Diallo, M. D. et al. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ. Microbiol. 6, 400–415 (2004).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2020). https://www.R-project.org/.
Li, C. et al. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci. Total Environ. 749, 141555 (2020).
Google Scholar
Murtaza, N. et al. Analysis of the effects of dietary pattern on the oral microbiome of elite endurance athletes. Nutrients 11, 1–12 (2019).
Google Scholar
Source: Ecology - nature.com