in

Microbiomes in the Challenger Deep slope and bottom-axis sediments

  • Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).

    PubMed 

    Google Scholar 

  • Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).

    ADS 

    Google Scholar 

  • Zhu, G. et al. Along-strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments. Geophys. J. Int. 218, 2122–2135 (2019).

    ADS 

    Google Scholar 

  • Bao, R. et al. Tectonically-triggered sediment and carbon export to the Hadal zone. Nat. Commun. 9, 121 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kioka, A. et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci. Rep. 9, 1553 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, M., Gieskes, J., Chen, L. Y., Shi, X. F. & Chen, D. F. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Mar. Geol. 386, 98–106 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Liu, S. & Peng, X. Organic matter diagenesis in hadal setting: insights from the pore-water geochemistry of the Mariana Trench sediments. Deep Sea Res. I 147, 22–31 (2019).

    CAS 

    Google Scholar 

  • Nunoura, T. et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes Environ. 33, 186–194 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ. Microbiol. 21, 716–729 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Nunoura, T. et al. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ. Microbiol. 15, 3087–3107 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Mason, E. et al. Volatile metal emissions from volcanic degassing and lava–seawater interactions at Kīlauea Volcano, Hawai’i. Commun. Earth Environ. 2, 79 (2021).

    ADS 

    Google Scholar 

  • Sun, R. et al. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nat. Commun. 11, 3389 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalia, K. & Khambholja, D. B. in Handbook of Arsenic Toxicology (ed. Flora, S. J. S.) Ch. 28 (Elsevier, 2015).

  • Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Oremland, R. S. & Stolz, J. F. The ecology of arsenic. Science 300, 939–944 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Popowich, A., Zhang, Q. & Le, X. C. Arsenobetaine: the ongoing mystery. Natl Sci. Rev. 3, 451–458 (2016).

    CAS 

    Google Scholar 

  • Hoffmann, T. et al. Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environ. Microbiol. 20, 305–323 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).

    Google Scholar 

  • Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217–226 (2000).

    Google Scholar 

  • Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a hadal biosphere at the Yap Trench. Front. Microbiol. 9, 2402 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Z. et al. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems 5, e00795-00719 (2020).

    Google Scholar 

  • Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, X. et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10, 1816 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laso-Pérez, R. et al. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio 10, e01814–e01819 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Z. M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Varliero, G., Bienhold, C., Schmid, F., Boetius, A. & Molari, M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic polar front. Front. Microbiol. 10, 665 (2019).

  • Su, X. et al. Identifying and predicting novelty in microbiome studies. mBio 9, e02099-02018 (2018).

    Google Scholar 

  • Jing, G. et al. Microbiome Search Engine 2: a platform for taxonomic and functional search of global microbiomes on the whole-microbiome level. mSystems 6, e00943-00920 (2021).

    Google Scholar 

  • Baltar, F., Zhao, Z. H. & Herndl, G. J. Potential and expression of carbohydrate untilization by marine fungi in the global ocean. Microbiome 9, 106 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quemener, M. et al. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ. Microbiol. 22, 3950–3967 (2020).

    CAS 

    Google Scholar 

  • Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bobay, L. M. & Ochman, H. The evolution of bacterial genome architecture. Front. Genet. 8, 72 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, L. et al. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46, D516–D521 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y., Ge, H. & Fang, J. Biogeochemistry of hadal trenches: Recent developments and future perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 155, 19–26 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Jørgensen, B. B. & Boetius, A. Feast and famine — microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).

    PubMed 

    Google Scholar 

  • Pérez Castro, S. et al. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. ISME J. 15, 3480–3497 (2021).

  • Rastelli, E. et al. Drivers of bacterial α- and β-diversity patterns and functioning in subsurface hadal sediments. Front. Microbiol. 10, 2609 (2019).

  • Vetter, Y. A. & Deming, J. W. Extracellular enzyme-activity in the Arctic northeast water polynya. Mar. Ecol. Prog. Ser. 114, 23–34 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Li, J. et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579, 250–255 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc. Jpn. Acad. 84, 246–263 (2008).

    CAS 

    Google Scholar 

  • Chakraborty, A. et al. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proc. Natl Acad. Sci. USA 117, 11029–11037 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 7, 47 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, C.-X. et al. Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on Earth. Microorganisms 8, 1309 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc. Natl Acad. Sci. USA 118, e2104529118 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, J. et al. Unexpectedly high diversity of anammox bacteria detected in deep-sea surface sediments of the South China Sea. FEMS Microbiol. Ecol. 95, fiz013 (2019).

  • Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Maalcke, W. J. et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle. J. Biol. Chem. 291, 17077–17092 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37, 428–461 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Oshiki, M., Ali, M., Shinyako-Hata, K., Satoh, H. & Okabe, S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environ. Microbiol. 18, 3133–3143 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Mateos, L. M. et al. in Advances in Applied Microbiology (eds Sariaslani, S. & Gadd, G. M.) Ch. 4 (Academic Press, 2017).

  • Ben Fekih, I. et al. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 9, 2473 (2018).

  • Wang, P. P., Sun, G. X. & Zhu, Y. G. Identification and characterization of arsenite methyltransferase from an archaeon, methanosarcina acetivorans C2A. Environ. Sci. Technol. 48, 12706–12713 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Masuda, H., Yoshinishi, H., Fuchida, S., Toki, T. & Even, E. Vertical profiles of arsenic and arsenic species transformations in deep-sea sediment, Nankai Trough, offshore Japan. Prog. Earth Planet Sci. 6, 28 (2019).

    ADS 

    Google Scholar 

  • Dunivin, T. K., Yeh, S. Y. & Shade, A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 17, 45 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teske, A. et al. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. 7, 75 (2016).

  • O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galinski, E. A. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37, 273–328 (1995).

    CAS 

    Google Scholar 

  • Papini, C. M., Pandharipande, P. P., Royer, C. A. & Makhatadze, G. I. Putting the piezolyte hypothesis under pressure. Biophys. J. 113, 974–977 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caumette, G., Koch, I. & Reimer, K. J. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit. 14, 2841–2853 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Whaley-Martin, K. J., Koch, I., Moriarty, M. & Reimer, K. J. Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environ. Sci. Technol. 46, 3110–3118 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795–4802 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhine, E. D., Phelps, C. D. & Young, L. Y. Anaerobic arsenite oxidation by novel denitrifying isolates. Environ. Microbiol. 8, 899–908 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Rhine et al. LY. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem. Biophys. Res. Commun. 354, 662–667 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Saunders, J. K., Fuchsman, C. A., Mckay, C. & Rocap, G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc. Natl Acad. Sci. USA 116, 9925–9930 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Couture, R. M., Sekowska, A., Fang, G. & Danchin, A. Linking selenium biogeochemistry to the sulfur‐dependent biological detoxification of arsenic. Environ. Microbiol. 14, 1612–1623 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. & Gladyshev, V. N. Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) project. PLoS Genet. 4, e1000095 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, T., Lin, J., Xu, Y.-Z. & Zhang, Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J. 10, 2048–2059 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, K., Wang, Q., Lv, M. & Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553–1563 (2019).

    CAS 

    Google Scholar 

  • O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, S. F., Zhou, Y. Q., Chen, Y. R. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).

    Google Scholar 

  • Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y., Gilna, P. & Li, W. Z. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25, 1338–1340 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Zenodo https://doi.org/10.5281/zenodo.6061243 (2022).

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jing, G. C. et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci. Rep. 7, 40371 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kang, D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–887 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Yamada, K. D., Tomii, K. & Katoh, K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 32, 3246–3251 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perry, M. heatmaps: flexible heatmaps for functional genomics and sequence features. R package version 1.14.0 (Bioconductor, 2020).

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).

    PubMed Central 

    Google Scholar 

  • Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Figshare https://doi.org/10.6084/m6089.figshare.12979709 (2022).


  • Source: Ecology - nature.com

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Finding her way to fusion