in

Microbotanical residues for the study of early hominin tools

  • Mercader, J., Panger, M. & Boesch, C. Excavation of a Chimpanzee stone tool site in the African rainforest. Science 296, 1452–1455 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mercader, J. et al. 4,300-year-old chimpanzee sites and the origins of percussive stone technology. PNAS 104, 3043–3048 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haslam, M. et al. Primate archaeology. Nature 460, 339–344 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plummer, T. W. & Finestone, E. Rethinking Human Evolution (ed. Schwartz, J.). 267–296. (MIT Press, 2018).

  • Toth, N. & Schick, K. An overview of the cognitive implications of the Oldowan industrial complex. Azania Archaeol. Res. Afr. 53, 3–39 (2018).

  • Plummer, T. Flaked stones and old bones: Biological and cultural evolution at the dawn of technology. Yearb. Phys. Anthropol. 47, 118–164 (2004).

    Google Scholar 

  • Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc. Natl. Acad. Sci. 107, 10002–10007 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahnouni, M. et al. 1.9-million- and 2.4-million-year-old artefacts and stone tool-cutmarked bones from Ain Boucherit, Algeria. Science 362, 1297–1301 (2018).

  • Stahl, A. B. Hominid dietary selection before fire. Curr. Anthropol. 25, 151–168 (1984).

    Google Scholar 

  • Laden, G. & Wrangham, R. The rise of hominids as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and Australopith origins. J. Hum. Evol. 49, 482–498 (2005).

    PubMed 

    Google Scholar 

  • Peters, C. & Vogel, J. Africa’s wild C4 plant foods and possible early hominid diets. J. Hum. Evol. 48, 219–236 (2005).

    PubMed 

    Google Scholar 

  • Copeland, S. R. Vegetation and plant food reconstruction of lowermost bed II, Olduvai Gorge, using modern analogs. J. Hum. Evol. 53, 146–175 (2007).

    PubMed 

    Google Scholar 

  • Domínguez Rodrigo, M. Interdisciplinary Approaches to the Oldowan (eds. Hovers, E. & Braun, D.R.). 129–147. (Springer, 2009).

  • Hovers, E. Origins of Human Innovation and Creativity (ed Elias, S.). 51–68. (Elsevier, 2012).

  • Domínguez Rodrigo, M. Meat eating by early hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge, Tanzania: An experimental approach using cut mark data. J. Hum. Evol. 33, 669–690 (1997).

    PubMed 

    Google Scholar 

  • Pobiner, B. L., Rogers, M. J., Monahan, C. M. & Harris, J. W. New evidence for hominin carcass processing strategies at 1.5 Ma, Koobi Fora, Kenya. J. Hum. Evolut. 55, 103–130 (2018).

    Google Scholar 

  • Marreiros, J. et al. Rethinking use-wear analysis and experimentation as applied to the study of past hominin tool use. J. Paleolithic Archaeol. 3, 475–502 (2020).

    Google Scholar 

  • de la Torre, I., Benito-Calvo, A., Arroyo, A., Zupancich, A. & Proffitt, T. Experimental protocols for the study of battered stone anvils from Olduvai Gorge (Tanzania). J. Archaeol. Sci. 40, 313–332. https://doi.org/10.1016/j.jas.2012.08.007 (2013).

    Article 

    Google Scholar 

  • Caruana, M. V., Carvalho, S., Braun, D. R., Presnyakova, D. & Haslam, M. Quantifying traces of tool use: A novel morphometric analysis of damage patterns on percussive tools. PLoS ONE 9, e113856 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benito-Calvo, A., Carvalho, S., Arroyo, A., Matsuzawa, T. & de la Torre, I. First GIS analysis of modern stone tools used by wild chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa (PLOS One, 2015). https://doi.org/10.1371/journal.pone.0121613.

    Book 

    Google Scholar 

  • Sánchez-Yustos, P. et al. Production and use of percussive stone tools in the Early Stone Age: Experimental approach to the lithic record of Olduvai Gorge, Tanzania. J. Archaeol. Sci. Rep. 2, 367–383 (2015).

    Google Scholar 

  • Arroyo, A., Hirata, S., Matsuzawa, T. & De La Torre, I. Nut cracking tools used by captive chimpanzees (Pan troglodytes) and their comparison with Early Stone Age percussive artefacts from Olduvai Gorge. PLoS ONE 11, e0166788 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arroyo, A. & de la Torre, I. Assessing the function of pounding tools in the early stone age: A microscopic approach to the analysis of percussive artefacts from beds I and II, Olduvai Gorge (Tanzania). J. Archaeol. Sci. 74, 23–34 (2016).

    Google Scholar 

  • Proffitt, T. et al. Analysis of wild macaque stone tools used to crack oil palm nuts 5, 1–16 (2018).

    Google Scholar 

  • Titton, S. et al. Active percussion tools from the Oldowan site of Barranco León (Orce, Andalusia, Spain): The fundamental role of pounding activities in hominin lifeways. J. Archaeol. Sci. 96, 131–147 (2018).

    Google Scholar 

  • Lemorini, C. et al. Old stones’ song: Use-wear experiments and analysis of the Oldowanquartz and quartzite assemblage from Kanjera South (Kenya). J. Hum. Evol. 72, 10–25 (2014).

    PubMed 

    Google Scholar 

  • Keeley, L. H. & Toth, N. Microwear polishes on early stone tools from Koobi Fora, Kenya. Nature 293, 464–465 (1981).

    ADS 

    Google Scholar 

  • Longo, L. et al. A multi-dimensional approach to investigate use-related biogenic residues on palaeolithic ground stone tools. Environ. Archaeol. 21, 1–29 (2021).

    Google Scholar 

  • Langejans, G. H. J. Remains of the day-preservation of organic micro-residues on stone tools. J. Archaeol. Sci. 37, 971–985 (2010).

    Google Scholar 

  • Langejans, G. H. J. Micro-residue analysis on early stone age tools from Sterkfontein, South Africa: A methodological enquiry. S. Afr. Archaeol. Bull. 67, 200–213 (2012).

    Google Scholar 

  • Pedergnana, A. & Ollé, A. Building an experimental comparative reference collection for lithic micro-residue analysis based on a multi-analytical approach. J. Archaeol. Method Theory 25, 117–154 (2018).

    Google Scholar 

  • Crowther, A., Haslam, M., Oakden, N., Walde, D. & Mercader, J. Documenting contamination in ancient starch laboratories. J. Archaeol. Sci. 49, 90–104 (2014).

    CAS 

    Google Scholar 

  • Pedergnana, A., Asryan, L., Fernández-Marchena, J. L. & Ollé, A. Modern contaminants affecting microscopic residue analysis on stone tools: A word of caution. Micron 86, 1–21. https://doi.org/10.1016/j.micron.2016.04.003 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mercader, J. et al. Starch contamination landscapes in field archaeology: Olduvai Gorge, Tanzania. Boreas 46, 918–934. https://doi.org/10.1111/bor.12241.ISSN0300-9483 (2017).

    Article 

    Google Scholar 

  • Barton, H., Torrence, R. & Fullagar, R. Clues to stone tool function re-examined: Comparing starch grain frequencies on used and unused obsidian artefacts. J. Archaeol. Sci. 25, 1231–1238 (1998).

    Google Scholar 

  • Atchison, J. & Fullagar, R. A Closer Look: Recent Australian Studies of Stone Tools Sydney University Archaeological Methods Series (ed Fullagar, R.). Chap. 8. 110–125. (1998).

  • Hardy, B. L. & Garufi, G. T. Identification of woodworking on stone tools through residue and use-wear analyses: Experimental results. J. Archaeol. Sci. 25, 177–184 (1998).

    Google Scholar 

  • Kealhofer, L., Torrence, R. & Fullagar, R. Integrating phytoliths within use-wear/residue studies of stone tools. J. Archaeol. Sci. 26, 527–546 (1999).

    Google Scholar 

  • Fullagar, R. et al. Evidence for Pleistocene seed grinding at Lake Mungo, south-eastern Australia. Archaeol. Ocean. 50, 3–19 (2015).

    Google Scholar 

  • Ma, Z., Perry, L., Li, Q. & Yang, X. Morphological changes in starch grains after dehusking and grinding with stone tools. Sci. Rep. 9, 2355 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Briuer, F. L. New clues to stone tool function: Plant and animal residues. Am. Antiq. 41, 478–484 (1976).

    Google Scholar 

  • Mora, R. & de la Torre, I. Percussion tools in Olduvai Beds I and II (Tanzania): Implication for early human activities. J. Anthropol. Archaeol. 24, 179–192 (2005).

    Google Scholar 

  • Diez-Martín, F., Sánchez, P., Domínguez-Rodrigo, M., Mabulla, A. & Barba, R. Were Olduvai Hominins making butchering tools or battering tools? Analysis of a recently excavated lithic assemblage from BK (Bed II, Olduvai Gorge, Tanzania). J. Anthropol. Archaeol. 28, 274–289 (2009).

    Google Scholar 

  • McHenry, L. J. & de la Torre, I. Hominin raw material procurement in the Oldowan-Acheulean transition at Olduvai Gorge. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2017.11.010 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Soto, M. et al. Systematic sampling of quartzite in sourcing analysis: intra-outcrop variability at Naibor Soit, Tanzania (part I). Archaeol. Anthropol. Sci. 12, 1–14 (2020).

    Google Scholar 

  • Zupancich, A. & Cristiani, E. Functional analysis of sandstone ground stone tools: Arguments for a qualitative and quantitative synergetic approach. Sci. Rep. 10, 1–13 (2020).

    Google Scholar 

  • Mercader, J. et al. Soil and plant phytoliths from the Acacia-Commiphora mosaics at Oldupai Gorge (Tanzania). PeerJ 7, e8211 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Krumbein, W. C. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Research 11, 64–72 (1941).

    CAS 

    Google Scholar 

  • Favreau, J. et al. Petrographic Characterization of Raw Material Sources at Oldupai Gorge, Tanzania. Frontiers in Earth Science 8, 1–26, https://doi.org/10.31219/osf.io/s2vgr (2020).

    Article 

    Google Scholar 

  • Soto, M. et al. Fingerprinting of quartzitic outcrops at Oldupai Gorge, Tanzania. Journal of Archaeological Science: Reports 29, 102010 (2020).

    Google Scholar 

  • Anderson, G. D. & Talbot, L. M. Soil Factors Affecting the Distribution of the Grassland Types and their Utilization by Wild Animals on the Serengeti Plains, Tanganyika. Journal of Ecology 53, 33–56 (1965).

    Google Scholar 

  • Leakey, M. D. Olduvai Gorge Vol. 3: Excavations in Beds I and II, 1960–1963. (Cambridge University Press, 1971).

  • Dorn, R. I. Rock Coatings. Vol. 6 (Elsevier, 1998).

  • Madella, M., Alexandre, A. & Ball, T. International code for phytolith nomenclature 10. Ann. Bot. 96, 253–260 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mercader, J. et al. Morphometrics of Starch Granules From Sub-Saharan Plants and the Taxonomic Identification of Ancient Starch. Frontiers in Earth Science 6, https://doi.org/10.3389/feart.2018.00146 (2018).

    ADS 
    Article 

    Google Scholar 

  • Rots, V., Hayes, E., Cnuts, D., Lepers, C. & Fullagar, R. Making sense of residues on flaked stone artefacts: learning from blind tests. PLOS One 11, e0150437. https://doi.org/10.1371/journal.pone.0150437 (2016).

  • Hayes, E. & Rots, V. Documenting scarce and fragmented residues on stone tools: an experimental approach using optical microscopy and SEM-EDS. Archaeological and Anthropological Sciences 11, 3065–3099 (2019).

    Google Scholar 

  • Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as Complex Differentiated Communities. Annual Review of Microbiology 56, 187–209 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Krumbein, W. E., Paterson, D. M. & Zavarzin, G. A. Fossil and Recent Biofilms: A Natural History of Life on Earth. (Springer Science & Business Media, 2003).

  • Wanger, G., Southam, G. & Onstott, T. C. Structural and Chemical Characterization of a Natural Fracture Surface from 2.8 Kilometers Below Land Surface: Biofilms in the Deep Subsurface. Geomicrobiology Journal 23, 443-452 (2006).

    CAS 

    Google Scholar 

  • Anders, M. H., Laubach, S. E. & Scholz, C. H. Microfractures: A Review. Journal of Structural Geology 69, 377–394 (2014).

  • Fletcher, M. Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium substratum separation distance. Journal of Bacteriology 170, 2027–2030 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fong, J. N. & Tildiz, F. H. Biofilm Matrix Proteins. Microbiology Spectrum 3, 1–16 (2015).

    CAS 

    Google Scholar 

  • Cnuts, D. & Rots, V. Extracting residues from stone tools for optical analysis: towards an experiment-based protocol. Archaeological and Anthropological Sciences 10, 1717–1736 (2018).

    Google Scholar 

  • Xhauflair, H. et al. Use-related or contamination? Residue and use-wear mapping on stone tools used for experimental processing of plants from Southeast Asia. Quaternary International 427, 80–93 (2017).

  • Pedergnana, A. “All that glitters is not gold”: Evaluating the Nature of the Relationship Between Archeological Residues and Stone Tool Function. Journal of Paleolithic Archaeology 3, 225–254 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Universal relation for life-span energy consumption in living organisms: Insights for the origin of aging

    New power sources