Mal, T. K. & Lovett-Doust, J. Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. Am. J. Bot. 92, 819–825 (2005).
Google Scholar
Wang, S., Li, L. & Zhou, D.-W. Morphological plasticity in response to population density varies with soil conditions and growth stage in Abutilon theophrasti (Malvaceae). Plant Ecol. 218, 785–797 (2017).
Google Scholar
Eid, E. M., Shaltout, K. H., Al-Sodany, Y. M., Haroun, S. A. & Jensen, K. A comparison of the functional traits of Phragmites australis in Lake Burullus (a Ramsar site in Egypt): Young vs. old populations over the nutrient availability gradient. Ecol. Eng. 166, 106244 (2021).
Google Scholar
Hassan, M. O. et al. Habitat variations affect morphological, reproductive and some metabolic traits of Mediterranean Centaurea glomerata Vahl populations. Heliyon 6, e04173 (2020).
Google Scholar
Więcław, H. Within-species variation among populations of the Carex flava complex as a function of habitat conditions. Plant Ecol. Divers. 10, 443–451 (2017).
Google Scholar
MacLeod, N. Phylogenetic signals in morphometric data. In Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 100–138 (Taylor & Francis, Routledge, 2002).
Google Scholar
Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 208747 (2014).
Koopman, J. et al. Global distribution of Carex buekii (Cyperaceae) reappraised. Phytotaxa 358, 139–161 (2018).
Google Scholar
Egorova, T. V. The Sedges (Carex L.) of Russia and Adjacent States (Within the Limits of the Former USSR) (St.-Petersburg State Chemical-Pharmaceutical Academy, St.-Petersburg, 1999).
Burkart, M. River corridor plants (Stromtalpflanzen) in Central European lowland: A review of a poorly understood plant distribution pattern: River corridor plants. Glob. Ecol. Biogeogr. 10, 449–468 (2001).
Google Scholar
Więcław, H. et al. Ecology, threats and conservation status of Carex buekii (Cyperaceae) in Central Europe. Sci. Rep. 9, 11162 (2019).
Google Scholar
Nobis, A. & Skórka, P. River corridor plants revisited: What drives their unique distribution patterns?. Plant Biosyst. 150, 244–253 (2016).
Google Scholar
Spink, A., Sparks, R. E., Van Oorschot, M. & Verhoeven, J. T. A. Nutrient dynamics of large river floodplains. Regul. Rivers. Res. Manag. 14, 203–216 (1998).
Google Scholar
Myśliwy, M. Diversity and environmental variability of riparian tall herb fringe communities of the order Convolvuletalia sepium in Polish river valleys. Monographiae Botaniceae 108, 1–129 (2019).
Google Scholar
Fischer, W. Die Stromtalpflanzen Brandenburgs. Unter Havel. Naturkundliche Berichte 5, 4–13 (1996).
Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (assessed: 08 March 2022).
Methods of Soil Analysis: Part 3 Chemical Methods. (Soil Science Society of America, American Society of Agronomy, 1996). https://doi.org/10.2136/sssabookser5.3.
StatSoft Inc. Electronic Statistics Textbook. (Tulsa, OK: StatSoft, 2013).
ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). (Ithaca NY, 2002).
Xu, X. et al. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 11, 904 (2020).
Google Scholar
Sardans, J. & Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 10, 419 (2021).
Google Scholar
Broadley, M. R. et al. Phylogenetic variation in the shoot mineral concentration of angiosperms. J. Exp. Bot. 55, 321–336 (2004).
Google Scholar
Watanabe, T. et al. Evolutionary control of leaf element composition in plants. New Phytol. 174, 516–523 (2007).
Google Scholar
Konings, H., Koot, E. & Wolf, A. T. Growth characteristics, nutrient allocation and photosynthesis of Carex species from floating fens. Oecologia 80, 111–121 (1989).
Google Scholar
Busch, J. Characteristic values of key ecophysiological parameters in the genus Carex. Flora 196, 405–430 (2001).
Google Scholar
Zhang, D. et al. Effect of hydrological fluctuation on nutrient stoichiometry and trade-offs of Carex schmidtii. Ecol. Ind. 120, 106924 (2021).
Google Scholar
Zhang, D. et al. Growth and physiological responses of Carex schmidtii to water-level fluctuation. Hydrobiologia 847(3), 967–981 (2020).
Google Scholar
Yan, H. et al. Growth and physiological responses to water depths in Carex schmidtii Meinsh. PLoS ONE 10(5), e0128176 (2015).
Google Scholar
Luo, W. & Xie, Y. Growth and morphological responses to water level and nutrient supply in three emergent macrophyte species. Hydrobiologia 624(1), 151–160 (2009).
Google Scholar
Lu, Y. Growth and morphological responses to water level variations in two Carex species from Sanjiang Plain, China. Afr. J. Agric. Res. 6, 28–34 (2011).
Cao, Y. et al. Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: A meta-analysis. CATENA 215, 106287 (2022).
Google Scholar
Sardans, T., Peñuelas, T., Prieto, P. & Estiarte, M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant Soil 306, 261–271 (2007).
Google Scholar
Flórez-Flórez, C. P., León-Peláez, J. D., Osorio-Vega, N. W. & Restrepo-Llano, M. F. Nutrient dynamics in forest plantations of Azadirachta indica (Meliaceae) established for restoration of degraded lands in Colombia. Rev. Biol. Trop. 61, 515–529 (2013).
Google Scholar
Jordan-Meille, L. & Pellerin, S. Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265, 75–92 (2004).
Google Scholar
Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S. & Dingkuhn, M. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum L. Environ. Exp. Bot. 67, 451–459 (2010).
Google Scholar
Bailey, J. S. & Laidlaw, A. S. Growth and development of white clover (Trifolium repens L.) as influenced by P and K nutrition. Ann. Bot. 81, 783–786 (1998).
Google Scholar
White, P. Relationship between the development and growth of rye (Secale cereale L.) and the potassium concentration in solution. Ann. Bot. 72, 349–358 (1993).
Google Scholar
Pujos, A. & Morard, P. Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 189, 189–196 (1997).
Google Scholar
Osakabe, Y. et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25, 609–624 (2013).
Google Scholar
Lebaudy, A. et al. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc. Natl. Acad. Sci. 105, 5271–5276 (2008).
Google Scholar
Tränkner, M., Tavakol, E. & Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plantarum 163, 414–431 (2018).
Google Scholar
Du, Q. et al. Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agric. Sci. 8, 1263–1277 (2017).
Google Scholar
Hu, W., Coomer, T. D., Loka, D. A., Oosterhuis, D. M. & Zhou, Z. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiol. Biochem. 115, 408–417 (2017).
Google Scholar
Reisch, C., Meier, S., Schmid, C. & Bartelheimer, M. Clonal diversity and genetic variation of the sedge Carex nigra in an alpine fen depend on soil nutrients. PeerJ 8, e8887 (2020).
Google Scholar
Lenssen, J. P. M., Menting, F. B. J. & Van der Putten, W. H. Plant responses to simultaneous stress of waterlogging and shade: Amplified or hierarchical effects?. New Phytol. 157, 281–290 (2003).
Google Scholar
Liu, Z. G. & Li, Z. Q. Effects of different grazing regimes on the morphological traits of Carex duriuscula on the Inner Mongolia steppe, China. N. Z. J. Agric. Res. 53(1), 5–12 (2010).
Google Scholar
Więcław, H. et al. Morphological variability and genetic diversity in Carex buxbaumii and Carex hartmaniorum (Cyperaceae) populations. PeerJ 9, e11372 (2021).
Google Scholar
Więcław, H., Kurnicki, B., Bihun, M., Białecka, B. & Koopman, J. Carex section Racemosae (Cyperaceae) in Europe: Morphological diversity, taxonomy and phylogenetic relationships. Bot. J. Linn. Soc. 183, 124–145 (2017).
Jiménez-Mejías, P., Benítez-Benítez, C., Fernández-Mazuecos, M. & Martín-Bravo, S. Cut from the same cloth: The convergent evolution of dwarf morphotypes of the Carex flava group (Cyperaceae) in Circum-Mediterranean mountains. PLoS ONE 12(12), e0189769 (2017).
Google Scholar
Więcław, H. Carex flava agg. (section Ceratocystis, Cyperaceae) in Poland: taxonomy, morphological variation, and soil conditions. Biodivers. Res. Conserv. 33, 3–51 (2014).
Google Scholar
Kalela, A. Systematische und Pflanzengeographische Studien an der Carex-Subsektion Alpinae Kalela. Annales Botanici Societatis Zoologicae-Botanicae Fennicae 19, 1–218 (1944).
Wallnöfer, B. Uber Carex melanostachya, C. norvegica, C. cespitosa und C. hartmanii in Südtirol. Gredleriana 4, 413–418 (2004).
Gebauer, S., Röser, M. & Hoffmann, M. H. Molecular phylogeny of the species-rich Carex sect. Racemosae (Cyperaceae) based on four nuclear and chloroplast markers. Syst. Bot. 40, 433–447 (2015).
Google Scholar
Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa in Eurasian Carex (Section Phaestoglochin, Cyperaceae). Syst. Bot. 33, 237–250 (2008).
Google Scholar
Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa of the Carex divulsa aggregate in Eurasia (section Phaestoglochin, Cyperaceae). Botan. J. Linn. Soc. 156, 385–409 (2008).
Google Scholar
Jiménez-Mejías, P. & Luceño, M. Cyperaceae. in Euro+Med. etc. Plantbase – the information resource for Euro-Mediterranean plant diversity. Available from: http://www.emplantbase.org/home.html (accessed 07 January 2022). (eds Greuter, W. & Raab-Straube, E. von) (2011).
Míguez, M., Martín-Bravo, S. & Jiménez-Mejías, P. Reconciling morphology and phylogeny allows an integrative taxonomic revision of the giant sedges of Carex section Rhynchocystis (Cyperaceae). Botan. J. Linn. Soc. 188, 34–58 (2018).
Google Scholar
Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Preslia 93, 255–304 (2021).
Google Scholar
Source: Ecology - nature.com