Ebenhard, T. Colonization in metapopulations: A review of theory and observations. Biol. J. Linn. Soc. 42, 105–121 (1991).
Google Scholar
Szucs, M., Melbourne, B. A., Tuff, T. & Hufbauer, R. A. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 281, 20141073 (2014).
Google Scholar
Williamson, M. Biological invasions Vol. 15 (Springer, 1996).
Dai, Z. C. et al. Synergy among hypotheses in the invasion process of alien plants: A road map within a timeline. Perspect. Plant Ecol. Evol. Syst. 47, 125575 (2020).
Google Scholar
Briski, E. et al. Beyond propagule pressure: Importance of selection during the transport stage of biological invasions. Front. Ecol. Environ. 16, 345–353 (2018).
Google Scholar
Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to nutrient gradients. Bryologist 97, 357–364 (1994).
Google Scholar
Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to a moisture gradient. J. Bryol. 18, 677–687 (1995).
Google Scholar
Wiklund, K. & Rydin, H. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 18, 907–913 (2004).
Google Scholar
Zanatta, F. et al. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat. Commun. 11, 1–9 (2020).
Google Scholar
Seaborn, T. J., Goldberg, C. S. & Crespi, E. J. Integration of dispersal data into distribution modeling: What have we done and what have we learned?. Front. Biogeogr. 12, 1–14 (2020).
Google Scholar
Glime, J. M. Bryophyte Ecology (Vol. 1, Issue Physiological Ecology, Chapter 4–10 Adaptive strategies: vegetative propagules, pp. 1–44). (2021).
Guerra, J., Brugués, M., Cano, M. J. & Cros, R. M. Bryum Hedw. in Flora Briofítica Ibérica, Vol. IV, Funariales, Splachnales, Schistostegales, Bryales, Timmiales (eds. Brugués, M. & Cros, R. M.) 105–178 (Universidad de Murcia. Sociedad Española de Briología, 2010).
Medina, N. G., Draper, I. & Lara, F. Biogeography of mosses and allies: Does size matter? in Biogeography of microscopic organisms: is everything small everywhere? 209–233 (2011). https://doi.org/10.1017/CBO9780511974878.012
Miles, C. J. & Longton, R. E. The role of spores in reproduction in mosses. Bot. J. Linn. Soc. 104, 149–173 (1990).
Google Scholar
Estébanez, B., Draper, I. & Bujalance, R. M. Bryophytes: An approximation to the simplest land plants. in Biodiversidad. Aproximación a la diversidad botánica y zoológica de España 19 (2011).
Frey, W. & Kürschner, H. Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 173–184 (2011).
Google Scholar
Giordano, S. et al. Regeneration from detached leaves of Pleurochaete squarrosa (Brid.) Lindb. in culture and in the wild. J. Bryol. 19, 219–227 (1996).
Google Scholar
La Farge, C., Williams, K. H. & England, J. H. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc. Natl. Acad. Sci. U. S. A. 110, 9839–9844 (2013).
Google Scholar
Robinson, S. C. & Miller, N. G. Bryophyte diversity on Adirondack alpine summits is maintained by dissemination and establishment of vegetative fragments and spores. Bryologist 116, 382–391 (2013).
Google Scholar
Glime, J. M. Chapter 2–1 Meet the bryophytes. in Bryophyte Ecology 1 (2020).
Korpelainen, H., Pohjamo, M. & Laaka-Lindberg, S. How efficiently does bryophyte dispersal lead to gene flow?. J. Hattori Bot. Lab. 205, 195–205 (2005).
Schuster, R. M. Phytogeography of the Bryophyta. in New manual of Bryology 1, 463–626 (Hattori Bot. Lab, 1983).
Löbel, S., Schröder, B. & Snäll, T. Projected shifts in deadwood bryophyte communities under national climate and forestry scenarios benefit large competitors and impair small species. J. Biogeogr. https://doi.org/10.1111/jbi.14278 (2021).
Google Scholar
Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. Dispersal of asexual propagules in bryophytes. J. Hattori Bot. Lab. 330, 319–330 (2003).
Miller, N. G. & Mogensen, G. S. Cyrtomnium hymenophylloides (Bryophyta, Mniaceae) in North America and Greenland: Male plants, sex-differential geographical distribution, and reproductive characteristics. Bryologist 100, 499–506 (1997).
Google Scholar
Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
Google Scholar
Patiño, J. & Vanderpoorten, A. Bryophyte biogeography. CRC. Crit. Rev. Plant Sci. 37, 175–209 (2018).
Google Scholar
Pasiche-Lisboa, C. J., Booth, T., Belland, R. J. & Piercey-Normore, M. D. Moss and lichen asexual propagule dispersal may help to maintain the extant community in boreal forests. Ecosphere 10, e02823 (2019).
Google Scholar
Barbé, M., Fenton, N. J. & Bergeron, Y. So close and yet so far away: Long-distance dispersal events govern bryophyte metacommunity reassembly. J. Ecol. 104, 1707–1719 (2016).
Google Scholar
Hansson, L., Söderström, L. & Solbreck, C. The ecology of dispersal in relation to conservation. in Ecological principles of nature conservation. Conservation Ecology series: principles, practices and management. (ed. Hansson, L.) (Springer, 1992). https://doi.org/10.1007/978-1-4615-3524-9
Google Scholar
Miller, N. G. & Ambrose, L. J. H. Growth in culture of wind-blown bryophyte gametophyte fragments from Arctic Canada. Bryologist 79, 55 (1976).
Google Scholar
Barbé, M., Fenton, N. J., Caners, R. & Bergeron, Y. Inter-annual variation in bryophyte dispersal: Linking bryophyte phenophases and weather conditions. Botany 95, 1151–1169 (2017).
Google Scholar
Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B Biol. Sci. 286, 20182253 (2019).
Google Scholar
Davison, G. W. H. Role of birds in moss dispersal. Br. Birds 69, 65–66 (1976).
Heinken, T., Lees, R., Raudnitschka, D. & Runge, S. Epizoochorous dispersal of bryophyte stem fragments by roe deer (Capreolus capreolus) and wild boar (Sus scrofa). J. Bryol. 23, 293–300 (2001).
Google Scholar
Parsons, J. G. et al. Bryophyte dispersal by flying foxes: A novel discovery. Oecologia 152, 112–114 (2007).
Google Scholar
Glime, J. M. Bryophyte Ecology (Vol. 2, Issue Bryological Interaction) (2021).
Ware, C., Bergstrom, D. M., Müller, E. & Alsos, I. G. Humans introduce viable seeds to the Arctic on footwear. Biol. Invasions 14, 567–577 (2012).
Google Scholar
Shacklette, H. T. Unattached moss polsters on Amchitka Island, Alaska. Bryologist 69, 346–352 (1966).
Google Scholar
Moles, A. T. & Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol. 92, 372–383 (2004).
Google Scholar
Kimmerer, R. W. Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 108, 391–401 (2005).
Google Scholar
Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).
Google Scholar
Stieha, C. R., Middleton, A. R., Stieha, J. K., Trott, S. H. & Mcletchie, D. N. The dispersal process of asexual propagules and the contribution to population persistence in Marchantia (Marchantiaceae). Am. J. Bot. 101, 348–356 (2014).
Google Scholar
Hugonnot, V. Comparative investigations of niche, growth rates and reproduction between the native moss Campylopus pilifer and the invasive C. introflexus. J. Bryol. 39, 79–84 (2017).
Google Scholar
Benscoter, B. W. Post-fire bryophyte establishment in a continental bog. J. Veg. Sci. 17, 647–652 (2006).
Google Scholar
Esposito, A., Mazzoleni, S. & Strumia, S. Post-fire bryophyte dynamics in Mediterranean vegetation. J. Veg. Sci. 10, 261–268 (1999).
Google Scholar
Naeth, M. A. & Wilkinson, S. R. Establishment of restoration trajectories for upland tundra communities on diamond mine wastes in the Canadian arctic. Restor. Ecol. 22, 534–543 (2014).
Google Scholar
Lamarre, J. J. M. Tundra bryophyte revegetation: novel methods for revegetating northern ecosystems (University of Alberta, 2016).
Dierßen, K. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. (Bryophytorum Bibliotheca 56. J. Cramer, Berlin, 289 pp., 2001).
Smith, A. J. E. The moss flora of Britain and Ireland (Cambridge University Press, 2004).
Google Scholar
Casas, C., Brugués, M., Cros, R. M. & Sérgio, C. Handbook of Mosses of the Iberian Peninsula and the Balearic Islands. (Instituts d’Estudis Catalans, 2006).
Medina, N., Mazimpaka Nibarere, V., Hortal, J. & Lara García, F. Catálogo de los briófitos epífitos que crecen en bosques de quercíneas del cuadrante noroccidental ibérico. Boletín la Soc. Esp. Briol. 30, 1–30 (2015).
Ron Alvarez, M. E. & Vicente, J. Contribución al conocimiento de la flora briológica de Canencia, Sierra de Guadarrama (Madrid). Bot. Complut. https://doi.org/10.5209/BOCM.7415 (1989).
Google Scholar
Pressel, S., Matcham, H. W. & Duckett, J. G. Studies of protonemal morphogenesis in mosses. XI. Bryum and allied genera: A plethora of propagules. J. Bryol. 29, 241–258 (2007).
Google Scholar
Söderström, L. & Herben, T. Dynamics of bryophyte metapopulations. in Advances in Briology 6. Population studies (ed. Longton, R. E.) 6, 205–240 (International Association of Briologists. Schweizerbart Science Publishers, 1997).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Cox, E. P. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1, 179–183 (1927).
R Core Team. R: A language and environment for Statistical Computing (2021).
Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests (2020).
Zeileis, A., Meyer, D. & Hornik, K. Residual-based shadings for visualizing (conditional) independence. J. Comput. Graph. Stat. 16, 507–525 (2007).
Google Scholar
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of Data Manipulation (2022).
Fox, J. & Weisberg, S. An R Companion to Applied Regression (2019).
Maechler, M. et al. robustbase: Basic Robust Statistics (2022).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2020).
Revelle, W. psych: Procedures for psychological, psychometric, and personality research (2021).
Kuhn, M., Jackson, S. & Cimentada, J. corrr: correlations in R. R package version 0.4.3 (2020).
Wei, T. & Simko, V. R package ‘corrplot’: visualization of a correlation matrix (Version 0.84) (2017).
Wilke, C. O. ggtext: improved text rendering support for ‘ggplot2’ (2020).
Auguie, B. gridExtra: miscellaneous functions for ‘Grid’ graphics (2017).
Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.1 (2020).
Stark, L. R., Nichols, L. II., McLetchie, D. N., Smith, S. D. & Zundel, C. Age and sex-specific rates of leaf regeneration in the Mojave Desert moss Syntrichia caninervis. Am. J. Bot. 91, 1–9 (2004).
Google Scholar
Fernandez-Mendoza, F., Estebanez, B., Gomez-Sanz, D. & Ron, E. Sporophyte-bearing specimens of Pleurochaete squarrosa in Zamora, Spain. Cryptogam. Bryol. 23, 211–215 (2002).
Chen, K. H., Liao, H. L., Arnold, A. E., Bonito, G. & Lutzoni, F. RNA-based analyses reveal fungal communities structured by a senescence gradient in the moss Dicranum scoparium and the presence of putative multi-trophic fungi. New Phytol. 218, 1597–1611 (2018).
Google Scholar
Kruijer, H. J. D., Raes, N. & Stech, M. Modelling the distribution of the moss species Hypopterygium tamarisci (Hypopterygiaceae, Bryophyta) in Central and South America. Nov. Hedwigia 91, 399–420 (2010).
Google Scholar
Van Zanten, B. O. Preliminary report on germination experiments designed to estimate the survival chances of moss spores during aerial trans-oceanic long-range dispersal in the Southern Hemisphere, with particular reference to New Zealand. J. Hattori Bot. Lab. 41, 133–140 (1976).
Van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).
De Meester, L., Gómez, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23, 121–135 (2002).
Google Scholar
Izquieta-Rojano, S. et al. Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediterranean area. Ecol. Indic. 60, 1221–1228 (2016).
Google Scholar
Kimmerer, R. W. & Young, C. C. Effect of gap size and regeneration niche on species coexistence in bryophyte communities. J. Torrey Bot. Soc. 123, 16–24 (1996).
Google Scholar
Refoyo, P., Peláez, M., García-Rodríguez, M., López-Sánchez, A. & Perea, R. Moss cover and browsing scores as sustainability indicators of mountain ungulate populations in Mediterranean environments. Biodivers. Conserv. https://doi.org/10.1007/s10531-022-02454-1 (2022).
Google Scholar
Source: Ecology - nature.com