in

Multidecadal, continent-level analysis indicates agricultural practices impact wheat aphid loads more than climate change

  • El Bilali, H., Callenius, C., Strassner, C. & Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur 8, e00154 (2019).

    Article 

    Google Scholar 

  • De Raymond, A. B. & Goulet, F. Science, technology and food security: An introduction. Sci. Technol. Soc. 25, 7–18 (2020).

    Article 

    Google Scholar 

  • Wang, C. et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 3, 57–65 (2022).

    Article 

    Google Scholar 

  • Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Verger, P. J. P. & Boobis, A. R. Reevaluate pesticides for food security and safety. Science 341, 717–718 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Humann‐Guilleminot, S. et al. A nation‐wide survey of neonicotinoid insecticides in agricultural land with implications for agri‐environment schemes. J. Appl. Ecol. 56, 1502–1514 (2019).

    Article 
    CAS 

    Google Scholar 

  • Haynes, K. J., Allstadt, A. J. & Klimetzek, D. Forest defoliator outbreaks under climate change: Effects on the frequency and severity of outbreaks of five pine insect pests. Glob. Change Biol. 20, 2004–2018 (2014).

    Article 

    Google Scholar 

  • Sheppard, L., Bell, J. R., Harrington, R. & Reuman, D. C. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat. Clim. Change 6, 610–613 (2016).

    Article 

    Google Scholar 

  • Skendžić, S. et al. The impact of climate change on agricultural insect pests. Insects 12, 440 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • WASDE. World Agricultural Supply and Demand Estimates 1554–9089 (World Agricultural Outlook Board, 2012).

  • FAOSTAT. Food and agriculture organisation of the United Nations. http://faostat.fao.org/ (2018).

  • Bellard, C. et al. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jactel, H., Koricheva, J. & Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103–108 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Stephane, A. P., Derocles, D. H., Lunt Sophie, C. F. & Moss., B. Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield. Mol. Ecol. 27, 4931–4946 (2018).

    Article 

    Google Scholar 

  • Nechols, J. R. The potential impact of climate change on non-target risks from imported generalist natural enemies and on biological control. Bio. Control 66, 37–44 (2021).

    Google Scholar 

  • Tian, B. et al. Elevated temperature reduces wheat grain yield by increasing pests and decreasing soil mutualists. Pest Manag. Sci. 75, 466–475 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).

    Article 

    Google Scholar 

  • Zhao, F., Zhang, W., Hoffmann, A. A. & Ma, C. Night warming on hot days produces novel impacts on development, survival, and reproduction in a small arthropod. J. Anim. Ecol. 83, 769–778 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).

    Article 

    Google Scholar 

  • Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    Article 

    Google Scholar 

  • Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gagic, V. et al. Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proc. Natl Acad. Sci. USA 118, 1–6 (2021).

    Article 
    CAS 

    Google Scholar 

  • Paredes, D. et al. Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecol. Lett. 24, 73–83 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Brattsten, L. B., Holyoke, C. W., Leeper, J. R. & Raffa, K. F. Insecticide resistance: Challenge to pest management and basic research. Science 231, 1255–1260 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Haddi, K. et al. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 76, 2286–2293 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gould, F., Brown, Z. S. & Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wei, N. et al. Transcriptome analysis and identification of insecticide tolerance-related genes after exposure to insecticide in Sitobion avenae. Genes 1012, 951 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gong, X. et al. Feasibility of reinforced post-endogenous denitrification coupling with synchronous nitritation, denitrification and phosphorus removal for high-nitrate sewage treatment using limited carbon source in municipal wastewater. Chemosphere 269, 128687 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tilman, D. et al. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

    CAS 
    Article 

    Google Scholar 

  • Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain 1, 361–368 (2018).

    Article 

    Google Scholar 

  • Lu, Y. et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Baillod, A. B., Tscharntke, T., Clough, Y. & Batary, P. Landscape‐scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. J. Appl. Ecol. 54, 1804–1813 (2017).

    Article 

    Google Scholar 

  • Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20, 1427–1436 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, W. et al. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proc. Natl Acad. Sci. USA 115, 700–7709 (2018).

    Google Scholar 

  • Horgan, F. G. et al. Population development of rice black bug, Scotinophara latiuscula (Breddin), under varying nitrogen in a field experiment. Entomol. Gen. 37, 19–33 (2018).

    Article 

    Google Scholar 

  • Butler, J., Garratt, M., & Leather, S. Fertilisers and insect herbivores: A meta‐analysis. Ann. Appl. Biol. 161, 223–233 (2012).

    Article 

    Google Scholar 

  • Aqueel, M. A. et al. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing. Insect Sci. 21, 74–82 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).

    Article 

    Google Scholar 

  • Winqvist, C. et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48, 570–579 (2011).

    Article 

    Google Scholar 

  • Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar 

  • Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Macfadyen, S. et al. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol. Lett. 12, 229–238 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Liu, J., Ning, J., Kuang, W. & Xu, X. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. J. Geogr. Sci. 73, 789–802 (2018).

    Google Scholar 

  • Ma, C., Ma, G. & Zhao, F. Impact of global warming on cereal aphids. Chin. J. Appl. Entomol. 51, 1435–1443 (2014).

    Google Scholar 

  • Han, Z. et al. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields. Pest Manag. Sci. 75, 3252–3259 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meisner, M. H., Harmon, J. P. & Ives, A. R. Temperature effects on long‐term population dynamics in a parasitoid-host system. Ecol. Monogr. 84, 457–476 (2014).

    Article 

    Google Scholar 

  • Xiao, H. et al. Exposure to mild temperatures decreases overwintering larval survival and post-diapause reproductive potential in the rice stem borer Chilo suppressalis. J. Pest Sci. 90, 117–125 (2017).

    Article 

    Google Scholar 

  • Senior, V. L. et al. Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20 year case study. Glob. Change Biol. 26, 2814–2828 (2020).

    Article 

    Google Scholar 

  • Chiu, M. C., Chen, Y. H. & Kuo, M. H. The effect of experimental warming on a low‐latitude aphid, Myzus varians. Entomol. Exp. Appl. 142, 216–222 (2012).

    Article 

    Google Scholar 

  • Adler, L. S., De Valpine, P., Harte, J. & Call, J. Effects of long-term experimental warming on aphid density in the field. J. Kans. Entomol. Soc. 80, 156–169 (2007).

    Article 

    Google Scholar 

  • Clement, S. L., Husebye, D. S. & Eigenbrode, S. D. Aphid Biodiversity under Environmental Change 107–129 (Springer, 2010).

  • Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos. T. Roy. Soc. B. 365, 2025–2034 (2010).

    Article 

    Google Scholar 

  • Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies—a review. Eur. J. Entomol. 105, 369–380 (2013).

    Article 

    Google Scholar 

  • Sigsgaard, L. A survey of aphids and aphid parasitoids in cereal fields in Denmark, and the parasitoids’ role in biological control. J. Appl. Entomol. 126, 101–107 (2002).

    Article 

    Google Scholar 

  • Diehl, E., Sereda, E., Wolters, V. & Birkhofer, K. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta‐analysis. J. Appl. Ecol. 50, 262–270 (2013).

    Article 

    Google Scholar 

  • Hopper, K. R. et al. Natural enemy impact on the abundance of Diuraphis noxia (Homoptera: Aphididae) in wheat in Southern France. Environ. Entomol. 24, 402–408 (1995).

    Article 

    Google Scholar 

  • Latham, D. R. & Mills, N. J. Quantifying aphid predation: The mealy plum aphid Hyalopterus pruni in California as a case study. J. Appl. Ecol. 47, 200–208 (2010).

    Article 

    Google Scholar 

  • Östman, Ö., Ekbom, B. & Bengtsson, J. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 45, 149–158 (2003).

    Article 

    Google Scholar 

  • Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid control. Ecology 84, 91–107 (2003).

    Article 

    Google Scholar 

  • Freier, B., Triltsch, H., Möwes, M. & Moll, E. The potential of predators in natural control of aphids in wheat: results of a ten-year field study in two German landscapes. Biocontrology 52, 775–788 (2007).

    Article 

    Google Scholar 

  • Barczak, T., Dębek-Jankowska, A. & Bennewicz, J. Primary parasitoid and hyperparasitoid guilds (Hymenoptera) of grain aphid (Sitobion avenae F.) in northern Poland. Arch. Biol. Sci. 66, 1141–1148 (2014).

    Article 

    Google Scholar 

  • Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, W., Jiang, F. & Ou, J. Global pesticide consumption and pollution: With China as a focus. P. Intern. Acad. Ecol. Environ. Sci. 1, 125–144 (2011).

    CAS 

    Google Scholar 

  • El-Wakeil, N., Gaafar, N., Sallam, A. & Volkmar, C. Side Effects of Insecticides on Natural Enemies and Possibility of their Integration in Plant Protection Strategies. Insecticides: Development of Safer and More Effective Technologies Agricultural and Biological Sciences (ed Trdan, S.) 1–56 (Intech Open Access Publisher, 2013).

  • Peshin, R. & Dhawan, A. K. Integrated Pest Management: Innovation-Development Process (Springer Science & Business Media, 2009).

  • Jia, B., Hong, S., Zhang, Y. & Cao, Y. Toxicity and safety of 12 insecticides to Diadegma semiclausum. J. Shanxi Agric. Sci. 43, 999–1002 (2015).

    Google Scholar 

  • Emery, S. E. et al. High agricultural intensity at the landscape scale benefits pests, but low intensity practices at the local scale can mitigate these effects. Agric. Ecosyst. Environ. 306, 107199 (2021).

    Article 

    Google Scholar 

  • Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.)(Homoptera: Aphididae) on different wheat cultivars. Crop. Prot. 30, 216–221 (2011).

    Article 

    Google Scholar 

  • Gao, J., Guo, H. J., Sun, Y. C. & Ge, F. Juvenile hormone mediates the positive effects of nitrogen fertilization on weight and reproduction in pea aphid. Pest Manag. Sci. 74, 2511–2519 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnett, K. L. & Facey, S. L. Grasslands, invertebrates, and precipitation: A review of the effects of climate change. Front. Plant. Sci. 7, 1196 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yu, X. et al. Engineering plants for aphid resistance: Current status and future perspectives. Theor. Appl. Genet. 127, 2065–2083 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin, E. A. et al. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).

    Article 

    Google Scholar 

  • Lu, Y. H. et al. Major ecosystems in China: Dynamics and challenges for sustainable management. Environ. Manag. 48, 13–27 (2011).

    Article 

    Google Scholar 

  • Wood, G. A. et al. Real-time measures of canopy size as a basis for spatially varying nitroge applications to winter wheat sown at different seed rates. Biosyst. Eng. 84, 513–531 (2003).

    Article 

    Google Scholar 

  • NOAA. https://www.ncdc.noaa.gov/cdo-web/ (2018).

  • WORLD BANK GROUP. https://climateknowledgeportal.worldbank.org/download-data (2018).


  • Source: Ecology - nature.com

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    New hardware offers faster computation for artificial intelligence, with much less energy