in

Multiple heavy metals affect root response, iron plaque formation, and metal bioaccumulation of Kandelia obovata

  • MacFarlane, G. R., Koller, C. E. & Blomberg, S. P. Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere 69, 1454–1464 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Krauss, K. W. & Osland, M. J. Tropical cyclones and the organization of mangrove forests: A review. Ann. Bot. 125, 213–234 (2020).

    PubMed 

    Google Scholar 

  • Kirk, G. J. D. & Krinzucker, H. J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modeling study. Ann. Bot. 96, 639–646 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, C., Huang, L., Xue, S. G. & Pan, W. S. Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere 168, 969–975 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tripathi, R. D. et al. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6, 1789–1800 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xiao, W. et al. Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.). Sci. Total Environ. 788, 147786 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lee, C. H., Hsieh, Y. C., Lin, T. H. & Lee, D. Y. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 363, 231–241 (2013).

    CAS 
    Article 

    Google Scholar 

  • Dai, M. Y. et al. Phosphorus effects on radial oxygen loss, root porosity and iron plaque in two mangrove seedlings under cadmium stress. Mar. Pollut. Bull. 119, 262–269 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, C. Y., Chen, C. L., Gong, X. F., Zhou, W. B. & Yang, J. Y. Progress in research of iron plaque on root surface of wetland plants. Acta Ecol. Sin. 34, 2470–2480 (2014).

    CAS 

    Google Scholar 

  • Li, J., Liu, J. C., Yan, C. L., Du, D. L. & Li, H. L. The alleviation effect of iron on cadmium phytotoxicity on mangrove A. marina. Alleviation effect of rion on cadmium phytotoxicity in mangrove Avicennia marina (Forsk.) Vierh. Chemosphere 226, 413–420 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, J. Y. et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ. Pollut. 260, 113970 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farhat, Y. A., Kim, S. H., Seyfferth, A. L., Zhang, L. & Neumann, R. B. Altered arsenic availability, uptake, and allocation in rice under elevated temperature. Sci. Total Environ. 763, 143049 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, X. Y. et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. R. 23, 8244–8259 (2016).

    CAS 
    Article 

    Google Scholar 

  • Abubakar, U. S., Zulkifli, S. Z. & Ismail, A. Heavy metals bioavailability and pollution indices evaluation in the mangrove surface sediment of Sungai Puloh Malaysia. Environ. Earth. Sci. 77, 225 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kulkarni, R., Deobagkar, D. & Zinjarde, S. Metals in mangrove ecosystems and associated biota: A global perspective. Ecotox. Environ. Safe. 153, 215–228 (2018).

    CAS 
    Article 

    Google Scholar 

  • Shi, C., Ding, H., Zan, Q. J. & Li, R. L. Spatial variation and ecological risk assessment of heavy metals in mangrove sediments across China. Mar. Pollut. Bull. 143, 115–124 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheng, H. et al. Mixture of Pb, Zn and Cu on root permeability and radial oxygen loss in the mangrove Bruguiera gymnorrhiza. Ecotoxicology 29, 691–697 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheng, S. S. et al. Temporal variations in physiological responses of kandelia obovata seedlings exposed to multiple heavy metals. Mar. Pollut. Bull. 124, 1089–1095 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shen, X. X. et al. Does combined heavy metal stress enhance iron plaque formation and heavy metal bioaccumulation in Kandelia obovata?. Environ. Exp. Bot. 186, 104463 (2021).

    CAS 
    Article 

    Google Scholar 

  • Shen, X. X. et al. Interactive effects of single, binary and trinary trace metals (lead, zinc and copper) on the physiological responses of Kandelia obovata seedlings. Environ. Geochem. Hlth. 41, 135–148 (2019).

    CAS 
    Article 

    Google Scholar 

  • Youssef, T. & Saenger, P. Anatomical adaptive strategies to flooding and rhizosphere oxidation in mangrove seedlings. Aust. J. Bot. 44, 297–313 (1996).

    Article 

    Google Scholar 

  • Cheng, H., Wang, Y. S., Fei, J., Jiang, Z. Y. & Ye, Z. H. Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient. Ecotoxicology 24, 1659–1667 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Takahashi, H., Yamauchi, T., Colmer, T. D. & Nakazono, M. Aerenchyma formation in plants. In Low-Oxygen Stress in Plants (eds van Dongen, J. T. & Licausi, F.) 247–265 (Springer, 2014).

    Chapter 

    Google Scholar 

  • Yamauchi, T., Colmer, T. D., Pedersen, O. & Nakazono, M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 176, 1118–1130 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheng, H. et al. The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environ. Pollut. 158, 1189–1196 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Y. et al. Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings. Mar. Pollut. Bull. 58, 1843–1849 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, C., Li, H., Ye, Z., Wu, F. & Wong, M. H. Effects of As levels on radial oxygen loss and as speciation in rice. Environ. Sci. Pollut R. 20, 8334–8341 (2013).

    CAS 
    Article 

    Google Scholar 

  • Mendellshn, A., Kleiss, B. A. & Wakeley, J. S. Factors controlling the formation of oxidized root channels—a review. Wetlands 15, 37–46 (1995).

    Article 

    Google Scholar 

  • Moller, C. L. & Sand-Jesen, K. Iron plaques improve the oxygen supply to root meristems of the freshwater plant Lobelia dortmanna. New Phytol. 179, 848–856 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Yang, J. X., Liu, Y. & Ye, Z. H. Root-induced changes of pH, eh, Fe (II) and fractions of Pb and Zn in rhizosphere soils of four wetland plants with different radial oxygen losses. Pedosphere 22, 518–527 (2012).

    CAS 
    Article 

    Google Scholar 

  • Hu, M., Li, F., Liu, C. & Wu, W. The diversity and abundance of as (III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Sci. Rep. 5, 13611 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huang, G. X., Ding, C. F., Li, Y. S., Zhang, T. L. & Wang, X. X. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.). J. Hazard. Mater. 398, 122860 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thakur, S. et al. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ. Monit. Assess. 188, 206–212 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Huang, H., Zhu, Y., Chen, Z., Yin, X. & Sun, G. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. J. Soil. Sediment. 12, 402–410 (2012).

    CAS 
    Article 

    Google Scholar 

  • Zhong, S. Q. Effect of iron plaque on root growth and activity of two wetland plants. J. Hydroecol. 36, 74–79 (2015).

    Google Scholar 

  • Khan, N. et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv. Agron. 138, 1–96 (2016).

    Article 

    Google Scholar 

  • Ma, H. H. et al. Formation of iron plaque on roots of Iris pseudacorus and its consequence for cadmium immobilization is impacted by zinc concentration. Ecotox. Environ. Safe. 193, 110306 (2020).

    CAS 
    Article 

    Google Scholar 

  • Martinez, S., Sáenz, M. E., Alberdi, J. L. & Di Marzio, W. D. Comparative ecotoxicity of single and binary mixtures exposures of cadmium and zinc on growth and biomarkers of Lemna gibba. Ecotoxicology 29, 571–583 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, Y. Z., Hu, Y. & Liu, Y. X. Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper, cadmium and lead. Acta Ecol. Sin. 29, 320–326 (2009).

    Article 

    Google Scholar 

  • Deraison, H., Badenhausser, I., Börger, L. & Gross, N. Herbivore effect traits and their impact on plant community biomass: An experimental test using grasshoppers. Funct. Ecol. 29, 650–661 (2015).

    Article 

    Google Scholar 

  • Wang, F., Wang, X. & Song, N. Polythylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 784, 147133 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yu, H. et al. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system?. Environ. Int. 156, 106708 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • He, B., Li, R. L., Chai, M. W. & Qiu, G. Y. Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environ. Geochem. Hlth. 36, 467–476 (2014).

    CAS 
    Article 

    Google Scholar 

  • Du, J. N., Yan, C. L. & Li, Z. D. Formation of iron plaque on mangrove Kandalar. Obovata (S.L.) Root surfaces and its role in cadmium uptake and translocation. Mar. Pollut. Bull. 74, 105–109 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hao, Z. B., Cang, J. & Xu, Z. Plant Physiology Experiment (Harbin Institute of Technology Press, 2004).

    Google Scholar 

  • Kludze, H. K., Delaune, R. D. & Patrick, W. H. A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots. Agron. J. 86, 483–487 (1994).

    CAS 
    Article 

    Google Scholar 

  • Kludze, H. K., Delaune, R. D. & Patrick, W. H. Aerenchyma formation and methane and oxygen-exchange in rice. Soil Sci. Soc. Am. J. 57, 386–391 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mei, X. Q., Yang, Y., Tam, N. F. Y., Wang, Y. W. & Li, L. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Res. 50, 147–159 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Taylor, G. J. & Crowder, A. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am. J. Bot. 70, 1254–1257 (1983).

    CAS 
    Article 

    Google Scholar 

  • USEPA (United States Environmental Protection Agency). Method 3052: microwave assisted acid digestion of siliceous and organically based matrices SW-846. DC: Washington (1996).


  • Source: Ecology - nature.com

    Using seismology for groundwater management

    Bridging careers in aerospace manufacturing and fusion energy, with a focus on intentional inclusion