Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. 1, 1–39 (1988).
Google Scholar
Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 7, 76–85 (2007).
Google Scholar
Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).
Google Scholar
Delatte, H. et al. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector-Borne Zoonotic Dis. 10, 249–258 (2010).
Google Scholar
Pereira-dos-Santos, T., Roiz, D., Lourenço-de-Oliveira, R. & Paupy, C. A systematic review: Is Aedes albopictus an efficient bridge vector for zoonotic arboviruses? Pathogens 9, 266 (2020).
Google Scholar
Gratz, N. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).
Google Scholar
Grard, G. et al. Zika virus in Gabon (Central Africa)—2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 8, e2681 (2014).
Google Scholar
Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).
Google Scholar
Lounibos, L. P. & Kramer, L. D. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J. Infect. Dis. 214, S453–S458 (2016).
Google Scholar
European Centre for Disease Prevention and Control (ECDC). Vector Control with a Focus on Aedes aegypti and Aedes albopictus Mosquitoes: Literature Review and Analysis of Information (ECDC, Stockholm, Sweden, 2017).
Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. PNAS 103, 6242–6247 (2006).
Google Scholar
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From the Global Invasive Species Database, Vol. 12 (Invasive Species Specialist Group, 2000).
Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).
Google Scholar
Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).
Google Scholar
Marini, F., Caputo, B., Pombi, M., Tarsitani, G. & Della-Torre, A. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark–release–recapture experiments. Med. Vet. Entomol. 24, 361–368 (2010).
Google Scholar
Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).
Google Scholar
Collantes, F. et al. Review of ten-years presence of Aedes albopictus in Spain 2004–2014: Known distribution and public health concerns. Parasit Vectors 8, 1–11 (2015).
Google Scholar
Aranda, C., Eritja, R. & Roiz, D. First record and establishment of the mosquito Aedes albopictus in Spain. Med. Vet. Entomol. 20, 150–152 (2006).
Google Scholar
Giménez, N. et al. Introduction of Aedes albopictus in Spain: A new challenge for public health. Gac. Sanit. 21, 25–28 (2007).
Google Scholar
European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (2022).
Shigesada, N. & Kawasaki, K. Biological Invasions: Theory and Practice (Oxford University Press, 1997).
Puth, L. M. & Post, D. M. Studying invasion: Have we missed the boat? Ecol. Lett. 8, 715–721 (2005).
Google Scholar
Leung, B. et al. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R Soc. Lond. Ser. B Biol. Sci. 269, 2407–2413 (2002).
Google Scholar
Lounibos, L. P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).
Google Scholar
Manni, M. et al. Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0005332 (2017).
Google Scholar
Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).
Google Scholar
Lühken, R. et al. Microsatellite typing of Aedes albopictus (Diptera: Culicidae) populations from Germany suggests regular introductions. Infect. Genet. Evol. 81, 104237 (2020).
Google Scholar
Battaglia, V. et al. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity. Front. Genet. 7, 208 (2016).
Google Scholar
Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).
Google Scholar
Eritja, R., Palmer, J. R., Roiz, D., Sanpera-Calbet, I. & Bartumeus, F. Direct evidence of adult Aedes albopictus dispersal by car. Sci. Rep. 7, 1–15 (2017).
Google Scholar
Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).
Google Scholar
Swan, T. et al. A literature review of dispersal pathways of Aedes albopictus across different spatial scales: Implications for vector surveillance. Parasit Vectors 15, 1–13 (2022).
Google Scholar
Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x (2004).
Google Scholar
Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x (2012).
Google Scholar
Hurst, G. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B: Biol. Sci. 272, 1525–1534 (2005).
Google Scholar
Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).
Google Scholar
Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7, e38544 (2012).
Google Scholar
Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B: Biol. Sci. 282, 20150249 (2015).
Google Scholar
Goubert, C., Minard, G., Vieira, C. & Boulesteix, M. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 117, 125–134 (2016).
Google Scholar
Western, D. Human-modified ecosystems and future evolution. PNAS 98, 5458–5465 (2001).
Google Scholar
Pech-May, A. et al. Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Trop. 157, 30–41 (2016).
Google Scholar
Vargo, E. L. et al. Hierarchical genetic analysis of German cockroach (Blattella germanica) populations from within buildings to across continents. PLoS ONE 9, e102321 (2014).
Google Scholar
von Beeren, C., Stoeckle, M. Y., Xia, J., Burke, G. & Kronauer, D. J. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Sci. Rep. 5, 1–7 (2015).
Tseng, S.-P. et al. Genetic diversity and Wolbachia infection patterns in a globally distributed invasive ant. Front. Genet. 10, 838 (2019).
Google Scholar
Wesson, D. M., Porter, C. H. & Collins, F. H. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol. Phylogen. Evol. 1, 253–269 (1992).
Google Scholar
Mishra, S., Sharma, G., Das, M. K., Pande, V. & Singh, O. P. Intragenomic sequence variations in the second internal transcribed spacer (ITS2) ribosomal DNA of the malaria vector Anopheles stephensi. PLoS ONE 16, e0253173 (2021).
Google Scholar
Artigas, P. et al. Aedes albopictus diversity and relationships in south-western Europe and Brazil by rDNA/mtDNA and phenotypic analyses: ITS-2, a useful marker for spread studies. Parasit Vectors 14, 1–23 (2021).
Google Scholar
Armbruster, P. et al. Infection of New-and Old-World Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. J. Med. Entomol. 40, 356–360 (2003).
Google Scholar
Maia, R., Scarpassa, V. M., Maciel-Litaiff, L. & Tadei, W. P. Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Gen. Mol. Res. 2000, 998–1007 (2009).
Google Scholar
Birungi, J. & Munstermann, L. E. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: Evidence for an independent invasion into Brazil and United States. Ann. Entomol. Soc. Am. 95, 125–132 (2002).
Google Scholar
Kambhampati, S. & Rai, K. S. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome 34, 288–292 (1991).
Google Scholar
Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).
Google Scholar
Wiwatanaratanabutr, I. Geographic distribution of wolbachial infections in mosquitoes from Thailand. J. Invertebr. Pathol. 114, 337–340 (2013).
Google Scholar
Carvajal, T. M., Hashimoto, K., Harnandika, R. K., Amalin, D. M. & Watanabe, K. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasit. Vectors 12, 1–9 (2019).
Google Scholar
Atyame, C. M., Delsuc, F., Pasteur, N., Weill, M. & Duron, O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol. Biol. Evol. 28, 2761–2772 (2011).
Google Scholar
Damiani, C. et al. Wolbachia in Aedes koreicus: Rare detections and possible implications. Insects 13, 216 (2022).
Google Scholar
Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).
Google Scholar
Schuler, H. et al. The hitchhiker’s guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 25, 1595–1609 (2016).
Google Scholar
Ross, P. A., Ritchie, S. A., Axford, J. K. & Hoffmann, A. A. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl. Trop. Dis. 13, e0007357 (2019).
Google Scholar
Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).
Google Scholar
Rokas, A., Atkinson, R. J., Brown, G. S., West, S. A. & Stone, G. N. Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: Demographic history or a Wolbachia selective sweep? Heredity 87, 294–304 (2001).
Google Scholar
Porretta, D., Mastrantonio, V., Bellini, R., Somboon, P. & Urbanelli, S. Glacial history of a modern invader: Phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus. PLoS ONE 7, e44515. https://doi.org/10.1371/journal.pone.0044515 (2012).
Google Scholar
Motoki, M. T. et al. Population genetics of Aedes albopictus (Diptera: Culicidae) in its native range in Lao People’s Democratic Republic. Parasit. Vectors 12, 1–12 (2019).
Google Scholar
Zhong, D. et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS ONE 8, e68586 (2013).
Google Scholar
Usmani-Brown, S., Cohnstaedt, L. & Munstermann, L. E. Population genetics of Aedes albopictus (Diptera: Culicidae) invading populations, using mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 5 sequences. Ann. Entomol. Soc. Am. 102, 144–150 (2009).
Google Scholar
Mousson, L. et al. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet. Res. 86, 1–11 (2005).
Google Scholar
Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572. https://doi.org/10.1126/science.1122033 (2006).
Google Scholar
Dowling, D. K., Friberg, U. & Lindell, J. Evolutionary implications of non-neutral mitochondrial genetic variation. Ecol. Evol. 23, 546–554 (2008).
Google Scholar
Montero-Pau, J., Gómez, A. & Muñoz, J. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol. Oceanogr. Methods 6, 218–222 (2008).
Google Scholar
Porter, C. H. & Collins, F. H. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am. J. Trop. Med. 45, 271–279 (1991).
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Google Scholar
Prosser, S., Martínez-Arce, A. & Elías-Gutiérrez, M. A new set of primers for COI amplification from freshwater microcrustaceans. Mol. Ecol. Resour. 13, 1151–1155 (2013).
Google Scholar
Ivanova, N. V., Zemlak, T. S., Hanner, R. H. & Hebert, P. D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7, 544–548 (2007).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Google Scholar
Zhou, W., Rousset, F. & O’Neill, S. Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc. R Soc. Lond. Ser. B Biol. Sci. 265, 509–515 (1998).
Google Scholar
Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).
Google Scholar
Hu, Y. et al. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasit. Vectors 13, 1–14 (2020).
Heddi, A., Grenier, A.-M., Khatchadourian, C., Charles, H. & Nardon, P. Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. PNAS 96, 6814–6819 (1999).
Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
Google Scholar
Salzburger, W., Ewing, G. B. & Von Haeseler, A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20, 1952–1963 (2011).
Google Scholar
Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).
Google Scholar
Gower, J. C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. (2021).
Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. Spher. Trigon. 1, 5 (2017).
Palmer, J. R. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 1–13 (2017).
Google Scholar
Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics 1970, 547–558 (1970).
Google Scholar
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
Google Scholar
Stewart, C. Zero-inflated beta distribution for modeling the proportions in quantitative fatty acid signature analysis. J. Appl. Stat. 40, 985–992 (2013).
Google Scholar
Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. & Ferrari, S. L. Mixed beta regression: A Bayesian perspective. Comput. Stat. Data Anal. 61, 137–147 (2013).
Google Scholar
Branscum, A. J., Johnson, W. O. & Thurmond, M. C. Bayesian beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Aust. N. Z. J. Stat. 49, 287–301 (2007).
Google Scholar
Ospina, R. & Ferrari, S. L. Inflated beta distributions. Stat. Pap. 51, 111–126 (2010).
Google Scholar
Chung, H. & Beretvas, S. N. The impact of ignoring multiple membership data structures in multilevel models. Br. J. Math. Stat. Psychol. 65, 185–200 (2012).
Google Scholar
Source: Ecology - nature.com