Merel, S. et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327 (2013).
Google Scholar
Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
Google Scholar
Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).
Google Scholar
Ibelings, B. W. & Chorus, I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ. Pollut. 150, 177–192 (2007).
Google Scholar
Cheung, M. Y., Liang, S. & Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 51, 1–10 (2013).
Google Scholar
Rousso, B. Z., Bertone, E., Stewart, R. & Hamilton, D. P. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Res. 182, 115959 (2020).
Vadeboncoeur, Y. et al. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 48, 1408–1418 (2003).
Google Scholar
Han, Z. & Cui, B. Performance of macrophyte indicators to eutrophication pressure in ponds. Ecol. Eng. 96, 8–19 (2016).
Dorgham, M. Effects of Eutrophication. In Eutrophication: Causes, Consequences and Control (eds. Ansari, A. & Gill, S.). vol. 2, 29–44. (Springer, 2014).
Glibert, P. M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).
Google Scholar
Lürling, M. & Mucci, M. Mitigating eutrophication nuisance: In-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia 847, 4447–4467 (2020).
Hall, R. O., Likens, G. E. & Malcom, H. M. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. J. N. Am. Benthol. Soc. 20, 432–447 (2001).
Tanentzap, A. J. et al. Forests fuel fish growth in freshwater deltas. Nat. Commun. 5, 4077 (2014).
Google Scholar
Fey, S. B., Mertens, A. N. & Cottingham, K. L. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities. Oecologia 178, 875–885 (2015).
Google Scholar
Wondzell, S. M. & Bisson, P. A. Influence of wood on aquatic biodiversity. Am. Fish. Soc. Symp. 37, 249–263 (2003).
Czarnecka, M. Coarse woody debris in temperate littoral zones: Implications for biodiversity, food webs and lake management. Hydrobiologia 767, 13–25 (2016).
Graham, M. D. & Vinebrooke, R. D. Coupling of boreal forests and lakes: Effects of conifer pollen on littoral communities. Limnol. Oceanogr. 51, 1524–1529 (2006).
Google Scholar
Kelly, P. T. et al. Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Glob. Change Biol. 22, 2766–2775 (2016).
Google Scholar
Shao, J., Li, R., Lepo, J. E. & Gu, J. D. Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. J. Environ. Manag. 125, 149–155 (2013).
Tan, K. et al. A review of allelopathy on microalgae. Microbiology 165, 587–592 (2019).
Google Scholar
Tsuchiya, R., Kihei, M., Sakagami, Y. & Araki, T. Assessment of inhibition effect on growth of Microcystis aeruginosa by autoclaved water extracts from leaves of 104 woody plant species. J. Jpn. Limnol. 79, 41–48 (2018) (in Japanese with English abstract).
Neilen, A. D., Hawker, D. W., O’Brien, K. R. & Burford, M. A. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition. Chemosphere 184, 969–980 (2017).
Google Scholar
Chen, J., Zhang, H., Han, Z., Ye, J. & Liu, Z. The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol. Eng. 42, 130–133 (2012).
Zhou, B., Fu, M., Xie, J., Yang, X. & Li, Z. Ecological functions of bamboo forest: Research and application. J. For. Res. 16, 143–147 (2005).
Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes +. Glob. Change Biol. 21, e00787 (2020).
Shinohara, Y., Misumi, Y., Kubota, T. & Nanko, K. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. CATENA 172, 451–460 (2019).
Suzuki, S. & Nakagoshi, N. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol. Res. 23, 641–647 (2008).
Buziquia, S. T., Lopes, P. V. F., Almeida, A. K. & de Almeida, I. K. Impacts of bamboo spreading: A review. Biodivers. Conserv. 28, 3695–3711 (2019).
Kudo, G., Amagai, Y., Hoshino, B. & Kaneko, M. Invasion of dwarf bamboo into alpine snow-meadows in Northern Japan: Pattern of expansion and impact on species diversity. Ecol. Evol. 1, 85–96 (2011).
Google Scholar
Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982 (2021).
Fujii, Y. & Kobayashi, Y. Allelopathic activities of leaf leachates of Bamboo and Sasa; sandwich method of 80 species. Weed Biol. Manag. 39, 94–95 (1994).
Ogita, S. & Sasamoto, H. In vitro bioassay of allelopathy in four bamboo species; Bambusa multiplex, Phyllostachys bambusoides, P. nigra, Sasa kurilensis, using sandwich method and protoplast co-culture method with digital image analysis. Am. J. Plant Sci. 8, 1699 (2017).
Chuyen, N. V., Kurata, T., Kato, H. & Fujimaki, M. Antimicrobial activity of Kumazasa (Sasa albo-marginata). Agr. Biol. Chem. 46, 971–978 (1982).
Chongtham, N., Bisht, M. S. & Haorongbam, S. Nutritional properties of bamboo shoots: potential and prospects for utilization as a health food. Compr. Rev. Food Sci. Food Saf. 10, 153–168 (2011).
Google Scholar
Singhal, P., Satya, S. & Sudhakar, P. Antioxidant and pharmaceutical potential of bamboo leaves. Bamboo Sci. Cult. 24, 19–28 (2011).
Jin, L. et al. Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis 80, 293–304 (2020).
Google Scholar
Lin, Y. T. et al. Changes in the soil bacterial communities in a cedar plantation invaded by moso bamboo. Microb. Ecol. 67, 421–429 (2014).
Google Scholar
Li, Y. et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production. Plant Soil 418, 507–521 (2017).
Google Scholar
Liu, X. et al. Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests. Plant Soil 438, 85–99 (2019).
Google Scholar
O’connor, P. J., Covich, A. P., Scatena, F. N. & Loope, L. L. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: Leaf fall, aquatic leaf decay and patterns of invasion. J. Trop. Ecol. 16, 499–516 (2000).
Cai, L., Zhang, K., McKenzie, E. H. & Hyde, K. D. Freshwater fungi from bamboo and wood submerged in the Liput River in the Philippines. Fungal Divers. 13, 1–12 (2003).
Suto, S. Mariculture of seaweeds and its problems in Japan. NOAA Tech. Rep. NMFS Circ 388, 7–16 (1974).
Milstein, A., Azim, M. E., Wahab, M. A. & Verdegem, M. C. J. The effects of periphyton, fish and fertilizer dose on biological processes affecting water quality in earthen fish ponds. Environ. Biol. Fishes 68, 247–260 (2003).
Azim, M. E. et al. The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture 232, 441–453 (2004).
Khatoon, H., Yusoff, F., Banerjee, S., Shariff, M. & Bujang, J. S. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture 273, 470–477 (2007).
Ma, J. F. & Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan. (Elsevier Science, 2002).
Akagi, T. et al. Dissolved ion analyses of stream water from bamboo forests: Implication for enhancement of chemical weathering by bamboo. Geochem. J. 46, 505–515 (2012).
Google Scholar
Umemura, M. & Takenaka, C. Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecol. Res. 29, 501–510 (2014).
Google Scholar
Lürling, M. & Roessink, I. On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65, 618–626 (2006).
Google Scholar
Ji, X., Verspagen, J. M., Stomp, M. & Huisman, J. Competition between cyanobacteria and green algae at low versus elevated CO2: Who will win, and why?. J. Exp. Bot. 68, 3815–3828 (2017).
Google Scholar
Kang, C. et al. Effects of macrophyte Vallisneria asiatica biomasses on the algae community. Int. J. Environ. Eng. 7, 1161–1166 (2013).
Hao, A., Haraguchi, T., Kuba, T., Kai, H., Lin, Y. & Iseri, Y. Effect of the microorganism-adherent carrier for Nitzschia palea to control the cyanobacterial blooms. Ecol. Eng. 159, 106127 (2021).
Wang, Z., Li, G., Li, G. & Li, D. The decline process and major pathways of Microcystis bloom in Taihu Lake, China. Chin. J. Oceanol. Limnol. 30, 37–46 (2012).
Google Scholar
Xiao, M., Li, M. & Reynolds, C. S. Colony formation in the cyanobacterium. Microcystis Biol. Rev. 93, 1399–1420 (2018).
Google Scholar
Wu, Y. et al. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ. Microb. 13, 604–615 (2011).
Google Scholar
Ko, S. R. et al. Bioremediation of eutrophic water and control of cyanobacterial bloom by attached periphyton. Int. J. Environ. Sci. Technol. 16, 4173–4180 (2019).
Google Scholar
Mühlbauer, L. K., Schulze, M., Harpole, W. S. & Clark, A. T. gauseR: Simple methods for fitting Lotka-Volterra models describing Gause’s “Struggle for Existence”. Ecol. Evol. 10, 13275–13283 (2020).
Google Scholar
Li, J. et al. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J. Environ. Sci. 43, 40–47 (2016).
Ma, J. et al. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31, 136–142 (2014).
Hua, Q. et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 148, 953–959 (2018).
Google Scholar
Zhao, W., Zheng, Z., Zhang, J., Roger, S. F. & Luo, X. Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225, 424–433 (2019).
Google Scholar
Ball, A. S., Williams, M., Vincent, D. & Robinson, J. Algal growth control by a barley straw extract. Bioresour. Technol. 77, 177–181 (2001).
Google Scholar
Park, M. H., Kim, B. H., Chung, I. M. & Hwang, S. J. Selective bactericidal potential of rice (Oryza sativa L. var. japonica) hull extract on Microcystis strains in comparison with green algae and zooplankton. Bull. Environ. Contam. Toxicol. 83, 97–101 (2009).
Le Rouzic, B., Thiébaut, G. & Brient, L. Selective growth inhibition of cyanobacteria species (Planktothrix agardhii) by a riparian tree leaf extract. Ecol. Eng. 97, 74–78 (2016).
Eladel, H., Battah, M., Dawa, A., Abd-Elhay, R. & Anees, D. Effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J. Appl. Phycol. 31, 3557–3563 (2019).
Yang, J. et al. High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environ. Sci. Pollut. Res. 25, 4794–4802 (2018).
Google Scholar
Grover, J. P. Phosphorus-dependent growth kinetics of 11 species of freshwater algae. Limnol. Oceanogr. 34, 341–348 (1989).
Google Scholar
Shia, L. et al. Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J. Freshwat. Ecol. 25, 193–203 (2010).
Smith, D. J. et al. Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ. Microbiol. 23, 3020–3036 (2021).
Google Scholar
Source: Ecology - nature.com