in

Multiple roles of bamboo as a regulator of cyanobacterial bloom in aquatic systems

  • 1.

    Merel, S. et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Ibelings, B. W. & Chorus, I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ. Pollut. 150, 177–192 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Cheung, M. Y., Liang, S. & Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 51, 1–10 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Rousso, B. Z., Bertone, E., Stewart, R. & Hamilton, D. P. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Res. 182, 115959 (2020).

  • 7.

    Vadeboncoeur, Y. et al. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 48, 1408–1418 (2003).

    ADS 

    Google Scholar 

  • 8.

    Han, Z. & Cui, B. Performance of macrophyte indicators to eutrophication pressure in ponds. Ecol. Eng. 96, 8–19 (2016).

    Google Scholar 

  • 9.

    Dorgham, M. Effects of Eutrophication. In Eutrophication: Causes, Consequences and Control (eds. Ansari, A. & Gill, S.). vol. 2, 29–44. (Springer, 2014).

  • 10.

    Glibert, P. M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Lürling, M. & Mucci, M. Mitigating eutrophication nuisance: In-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia 847, 4447–4467 (2020).

    Google Scholar 

  • 12.

    Hall, R. O., Likens, G. E. & Malcom, H. M. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. J. N. Am. Benthol. Soc. 20, 432–447 (2001).

    Google Scholar 

  • 13.

    Tanentzap, A. J. et al. Forests fuel fish growth in freshwater deltas. Nat. Commun. 5, 4077 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Fey, S. B., Mertens, A. N. & Cottingham, K. L. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities. Oecologia 178, 875–885 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • 15.

    Wondzell, S. M. & Bisson, P. A. Influence of wood on aquatic biodiversity. Am. Fish. Soc. Symp. 37, 249–263 (2003).

    Google Scholar 

  • 16.

    Czarnecka, M. Coarse woody debris in temperate littoral zones: Implications for biodiversity, food webs and lake management. Hydrobiologia 767, 13–25 (2016).

    Google Scholar 

  • 17.

    Graham, M. D. & Vinebrooke, R. D. Coupling of boreal forests and lakes: Effects of conifer pollen on littoral communities. Limnol. Oceanogr. 51, 1524–1529 (2006).

    ADS 

    Google Scholar 

  • 18.

    Kelly, P. T. et al. Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Glob. Change Biol. 22, 2766–2775 (2016).

    ADS 

    Google Scholar 

  • 19.

    Shao, J., Li, R., Lepo, J. E. & Gu, J. D. Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. J. Environ. Manag. 125, 149–155 (2013).

    Google Scholar 

  • 20.

    Tan, K. et al. A review of allelopathy on microalgae. Microbiology 165, 587–592 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Tsuchiya, R., Kihei, M., Sakagami, Y. & Araki, T. Assessment of inhibition effect on growth of Microcystis aeruginosa by autoclaved water extracts from leaves of 104 woody plant species. J. Jpn. Limnol. 79, 41–48 (2018) (in Japanese with English abstract).

  • 22.

    Neilen, A. D., Hawker, D. W., O’Brien, K. R. & Burford, M. A. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition. Chemosphere 184, 969–980 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Chen, J., Zhang, H., Han, Z., Ye, J. & Liu, Z. The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol. Eng. 42, 130–133 (2012).

    Google Scholar 

  • 24.

    Zhou, B., Fu, M., Xie, J., Yang, X. & Li, Z. Ecological functions of bamboo forest: Research and application. J. For. Res. 16, 143–147 (2005).

    Google Scholar 

  • 25.

    Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes +. Glob. Change Biol. 21, e00787 (2020).

  • 26.

    Shinohara, Y., Misumi, Y., Kubota, T. & Nanko, K. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. CATENA 172, 451–460 (2019).

    Google Scholar 

  • 27.

    Suzuki, S. & Nakagoshi, N. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol. Res. 23, 641–647 (2008).

    Google Scholar 

  • 28.

    Buziquia, S. T., Lopes, P. V. F., Almeida, A. K. & de Almeida, I. K. Impacts of bamboo spreading: A review. Biodivers. Conserv. 28, 3695–3711 (2019).

    Google Scholar 

  • 29.

    Kudo, G., Amagai, Y., Hoshino, B. & Kaneko, M. Invasion of dwarf bamboo into alpine snow-meadows in Northern Japan: Pattern of expansion and impact on species diversity. Ecol. Evol. 1, 85–96 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982 (2021).

  • 31.

    Fujii, Y. & Kobayashi, Y. Allelopathic activities of leaf leachates of Bamboo and Sasa; sandwich method of 80 species. Weed Biol. Manag. 39, 94–95 (1994).

    Google Scholar 

  • 32.

    Ogita, S. & Sasamoto, H. In vitro bioassay of allelopathy in four bamboo species; Bambusa multiplex, Phyllostachys bambusoides, P. nigra, Sasa kurilensis, using sandwich method and protoplast co-culture method with digital image analysis. Am. J. Plant Sci. 8, 1699 (2017).

  • 33.

    Chuyen, N. V., Kurata, T., Kato, H. & Fujimaki, M. Antimicrobial activity of Kumazasa (Sasa albo-marginata). Agr. Biol. Chem. 46, 971–978 (1982).

    Google Scholar 

  • 34.

    Chongtham, N., Bisht, M. S. & Haorongbam, S. Nutritional properties of bamboo shoots: potential and prospects for utilization as a health food. Compr. Rev. Food Sci. Food Saf. 10, 153–168 (2011).

    CAS 

    Google Scholar 

  • 35.

    Singhal, P., Satya, S. & Sudhakar, P. Antioxidant and pharmaceutical potential of bamboo leaves. Bamboo Sci. Cult. 24, 19–28 (2011).

    Google Scholar 

  • 36.

    Jin, L. et al. Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis 80, 293–304 (2020).

    CAS 

    Google Scholar 

  • 37.

    Lin, Y. T. et al. Changes in the soil bacterial communities in a cedar plantation invaded by moso bamboo. Microb. Ecol. 67, 421–429 (2014).

    PubMed 

    Google Scholar 

  • 38.

    Li, Y. et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production. Plant Soil 418, 507–521 (2017).

    CAS 

    Google Scholar 

  • 39.

    Liu, X. et al. Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests. Plant Soil 438, 85–99 (2019).

    CAS 

    Google Scholar 

  • 40.

    O’connor, P. J., Covich, A. P., Scatena, F. N. & Loope, L. L. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: Leaf fall, aquatic leaf decay and patterns of invasion. J. Trop. Ecol. 16, 499–516 (2000).

    Google Scholar 

  • 41.

    Cai, L., Zhang, K., McKenzie, E. H. & Hyde, K. D. Freshwater fungi from bamboo and wood submerged in the Liput River in the Philippines. Fungal Divers. 13, 1–12 (2003).

    Google Scholar 

  • 42.

    Suto, S. Mariculture of seaweeds and its problems in Japan. NOAA Tech. Rep. NMFS Circ 388, 7–16 (1974).

    Google Scholar 

  • 43.

    Milstein, A., Azim, M. E., Wahab, M. A. & Verdegem, M. C. J. The effects of periphyton, fish and fertilizer dose on biological processes affecting water quality in earthen fish ponds. Environ. Biol. Fishes 68, 247–260 (2003).

    Google Scholar 

  • 44.

    Azim, M. E. et al. The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture 232, 441–453 (2004).

    Google Scholar 

  • 45.

    Khatoon, H., Yusoff, F., Banerjee, S., Shariff, M. & Bujang, J. S. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture 273, 470–477 (2007).

    Google Scholar 

  • 46.

    Ma, J. F. & Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan. (Elsevier Science, 2002).

  • 47.

    Akagi, T. et al. Dissolved ion analyses of stream water from bamboo forests: Implication for enhancement of chemical weathering by bamboo. Geochem. J. 46, 505–515 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 48.

    Umemura, M. & Takenaka, C. Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecol. Res. 29, 501–510 (2014).

    CAS 

    Google Scholar 

  • 49.

    Lürling, M. & Roessink, I. On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65, 618–626 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • 50.

    Ji, X., Verspagen, J. M., Stomp, M. & Huisman, J. Competition between cyanobacteria and green algae at low versus elevated CO2: Who will win, and why?. J. Exp. Bot. 68, 3815–3828 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Kang, C. et al. Effects of macrophyte Vallisneria asiatica biomasses on the algae community. Int. J. Environ. Eng. 7, 1161–1166 (2013).

    Google Scholar 

  • 52.

    Hao, A., Haraguchi, T., Kuba, T., Kai, H., Lin, Y. & Iseri, Y. Effect of the microorganism-adherent carrier for Nitzschia palea to control the cyanobacterial blooms. Ecol. Eng. 159, 106127 (2021).

  • 53.

    Wang, Z., Li, G., Li, G. & Li, D. The decline process and major pathways of Microcystis bloom in Taihu Lake, China. Chin. J. Oceanol. Limnol. 30, 37–46 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 54.

    Xiao, M., Li, M. & Reynolds, C. S. Colony formation in the cyanobacterium. Microcystis Biol. Rev. 93, 1399–1420 (2018).

    PubMed 

    Google Scholar 

  • 55.

    Wu, Y. et al. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ. Microb. 13, 604–615 (2011).

    CAS 

    Google Scholar 

  • 56.

    Ko, S. R. et al. Bioremediation of eutrophic water and control of cyanobacterial bloom by attached periphyton. Int. J. Environ. Sci. Technol. 16, 4173–4180 (2019).

    CAS 

    Google Scholar 

  • 57.

    Mühlbauer, L. K., Schulze, M., Harpole, W. S. & Clark, A. T. gauseR: Simple methods for fitting Lotka-Volterra models describing Gause’s “Struggle for Existence”. Ecol. Evol. 10, 13275–13283 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Li, J. et al. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J. Environ. Sci. 43, 40–47 (2016).

    Google Scholar 

  • 59.

    Ma, J. et al. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31, 136–142 (2014).

  • 60.

    Hua, Q. et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 148, 953–959 (2018).

    CAS 

    Google Scholar 

  • 61.

    Zhao, W., Zheng, Z., Zhang, J., Roger, S. F. & Luo, X. Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225, 424–433 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Ball, A. S., Williams, M., Vincent, D. & Robinson, J. Algal growth control by a barley straw extract. Bioresour. Technol. 77, 177–181 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Park, M. H., Kim, B. H., Chung, I. M. & Hwang, S. J. Selective bactericidal potential of rice (Oryza sativa L. var. japonica) hull extract on Microcystis strains in comparison with green algae and zooplankton. Bull. Environ. Contam. Toxicol. 83, 97–101 (2009).

  • 64.

    Le Rouzic, B., Thiébaut, G. & Brient, L. Selective growth inhibition of cyanobacteria species (Planktothrix agardhii) by a riparian tree leaf extract. Ecol. Eng. 97, 74–78 (2016).

    Google Scholar 

  • 65.

    Eladel, H., Battah, M., Dawa, A., Abd-Elhay, R. & Anees, D. Effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J. Appl. Phycol. 31, 3557–3563 (2019).

    Google Scholar 

  • 66.

    Yang, J. et al. High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environ. Sci. Pollut. Res. 25, 4794–4802 (2018).

    CAS 

    Google Scholar 

  • 67.

    Grover, J. P. Phosphorus-dependent growth kinetics of 11 species of freshwater algae. Limnol. Oceanogr. 34, 341–348 (1989).

    ADS 
    CAS 

    Google Scholar 

  • 68.

    Shia, L. et al. Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J. Freshwat. Ecol. 25, 193–203 (2010).

    Google Scholar 

  • 69.

    Smith, D. J. et al. Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ. Microbiol. 23, 3020–3036 (2021).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Richard Leakey (1944–2022)

    Preparing global online learners for the clean energy transition