in

Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System

  • IPCC Climate Change The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).

    Google Scholar 

  • Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).

    Article 
    ADS 

    Google Scholar 

  • Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change: Climate change impacts on catch potential. Glob. Change Biol. 16, 24–35 (2010).

    Article 
    ADS 

    Google Scholar 

  • Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    Article 
    ADS 

    Google Scholar 

  • Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hodgson, E. E., Essington, T. E. & Kaplan, I. C. Extending vulnerability assessment to include life stages considerations. PLoS ONE 11, e0158917 (2016).

    Article 

    Google Scholar 

  • Peck, M. A., Reglero, P., Takahashi, M. & Catalán, I. A. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. 116, 220–245 (2013).

    Article 
    ADS 

    Google Scholar 

  • Tsoukali, S., Visser, A. W. & MacKenzie, B. R. Functional responses of North Atlantic fish eggs to increasing temperature. Mar. Ecol. Prog. Ser. 555, 151–165 (2016).

    Article 
    ADS 

    Google Scholar 

  • Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779 (2010).

    Article 

    Google Scholar 

  • Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).

    Article 
    CAS 

    Google Scholar 

  • Brauner, C. J. Acid-base balance. In Fish Larval physiology (eds Finn, R. N. & Kapoor, B. G.) 185–198 (Science Publishers, 2008).

    Google Scholar 

  • Dahlke, F. T. et al. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Chang. Biol. 23, 1499–1510 (2017).

    Article 
    ADS 

    Google Scholar 

  • Shelbourne, J. E. Significance of the subdermal space in pelagic fish embryos and larvae. Nature 176, 743–744 (1955).

    Article 
    ADS 

    Google Scholar 

  • Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).

    Article 

    Google Scholar 

  • Shei, M., Mies, M. & Olivotto, I. Other demersal spawners and mouthbrooders. Marine ornamental species aquaculture, 223–250 (2017).

  • Beaudreau, A. H. The predatory role of lingcod (Ophiodon elongatus) in the San Juan Archipelago, Washington. (University of Washington, 2009).

  • Love, M. Certainly More Than You Want to Know About the Fishes of the Pacific Coast: A Postmodern Experience. (Really Big Press, 2011).

  • Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Reum, J. C. et al. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES J. Mar. Sci. 73, 582–595 (2016).

    Article 

    Google Scholar 

  • Cheresh, J. & Fiechter, J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System. Geophys. Res. Lett. 47, e2020089553 (2020).

    Article 
    ADS 

    Google Scholar 

  • Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10, 193–216 (2013).

    Article 
    ADS 

    Google Scholar 

  • Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503–518 (1991).

    Article 

    Google Scholar 

  • Lauel, B. J. & Blood, D. M. The Effects of Temperature on Hatching and Survival of Northern Rock Sole Larvae (Lepidopsetta polyxystra) (Springer, 2011).

    Google Scholar 

  • Guevara-Fletcher, C., Alvarez, P., Sanchez, J. & Iglesias, J. Effect of temperature on the development and mortality of European hake (Merluccius merluccius L.) eggs from southern stock under laboratory conditions. J. Exp. Mar. Biol. Ecol. 476, 50–57 (2016).

    Article 

    Google Scholar 

  • Collins, L. A. & Nelson, S. G. Effects of temperature on oxygen consumption, growth, and development of embryos and yolk-sac larvae of Siganus randalli (Pisces: Siganidae). Mar. Biol. 117, 195–204 (1993).

    Article 

    Google Scholar 

  • Cook, M. A., Guthrie, K. M., Rust, M. B. & Plesha, P. D. Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos. Aquac. Res. 36, 1298–1303 (2005).

    Article 

    Google Scholar 

  • Pörtner, H. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).

    Article 
    ADS 

    Google Scholar 

  • Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).

    Article 

    Google Scholar 

  • Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).

    Article 

    Google Scholar 

  • Peña, R., Dumas, S., Zavala-Leal, I. & Contreras-Olguín, M. Effect of incubation temperature on the embryonic development and yolk-sac larvae of the Pacific red snapper Lutjanus peru (Nichols & Murphy, 1922). Aquac Res 45, 519–527 (2014).

    Article 

    Google Scholar 

  • Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781 (2002).

    Article 

    Google Scholar 

  • Hassell, K. L., Coutin, P. C. & Nugegoda, D. Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri). Mar. Pollut. Bull. 57, 302–306 (2008).

    Article 
    CAS 

    Google Scholar 

  • Giorgi, A. E. The Environmental Biology of the Embryos, Egg Masses and Nesting Sites of the Lingcod, Ophiodon elongatus. (University of Washington, 1981).

  • Oseid, D. M. & Smith, L. L. Survival and hatching of walleye eggs at various dissolved oxygen levels. Progress. Fish-Cult. 33, 81–85 (1971).

    Article 
    CAS 

    Google Scholar 

  • Shumway, D. L., Warren, C. E. & Doudoroff, P. Influence of oxygen concentration and water movement on the growth of steelhead trout and coho salmon embryos. Trans. Am. Fish. Soc. 93, 342–356 (1964).

    Article 

    Google Scholar 

  • Baumann, H., Talmage, S. C. & Gobler, C. J. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat. Clim Change 2, 38–41 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Faria, A. M. et al. Effects of high pCO2 on early life development of pelagic spawning marine fish. Mar. Freshw. Res. 68, 2106–2114 (2017).

    Article 
    CAS 

    Google Scholar 

  • Frommel, A. Y. et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 42–46 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Munday, P. L. et al. Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES J. Mar. Sci. 73, 641–649 (2016).

    Article 

    Google Scholar 

  • Hurst, T. P., Fernandez, E. R. & Mathis, J. T. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 70, 812–822 (2013).

    Article 

    Google Scholar 

  • Wang, X., Song, L., Chen, Y., Ran, H. & Song, J. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Mar. Environ. Res. 131, 10–18 (2017).

    Article 

    Google Scholar 

  • Franke, A. & Clemmesen, C. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8, 3697–3707 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO 2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).

    Article 

    Google Scholar 

  • Bromhead, D. et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Res. II 113, 268–279 (2015).

    Article 
    CAS 

    Google Scholar 

  • Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).

    Article 

    Google Scholar 

  • Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    Article 

    Google Scholar 

  • Pörtner, H. O. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res. 110, 0910 (2005).

    Article 

    Google Scholar 

  • Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).

    Article 

    Google Scholar 

  • Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change: A review. Glob. Change Biol 24, 2239–2261 (2018).

    Article 
    ADS 

    Google Scholar 

  • Giorgi, A. E. & Congleton, J. L. Effects of current velocity on development and survival of lingcod, Ophiodon elongatus, embryos. Environ. Biol. Fish 10, 15–27 (1984).

    Article 

    Google Scholar 

  • Liu, G., Zhu, S., Liu, D. & Ye, Z. Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapia s fingerlings, Oreochromis niloticu reared in biofloc systems. Aquac. Res. 49, 2429–2439 (2018).

    Article 
    CAS 

    Google Scholar 

  • Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).

    ADS 

    Google Scholar 

  • Miller, T. J., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: Toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670 (1988).

    Article 

    Google Scholar 

  • Doi, H., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. open sci. 4, 170633 (2017).

    Article 
    ADS 

    Google Scholar 

  • Pimentel, M. S. et al. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J. Exp. Biol. 1, 092635. https://doi.org/10.1242/jeb.092635 (2014).

    Article 

    Google Scholar 

  • Politis, S. N., Dahlke, F. T., Butts, I. A., Peck, M. A. & Trippel, E. A. Temperature, paternity and asynchronous hatching influence early developmental characteristics of larval Atlantic cod, Gadus morhua. J. Exp. Mar. Biol. Ecol. 459, 70–79 (2014).

    Article 

    Google Scholar 

  • Appelbaum, S. et al. Studies on rearing of lingcod Ophiodon elongatus. Aquaculture 135, 219–227 (1995).

    Article 

    Google Scholar 

  • Hempel, G. Early life history of marine fish: The egg stage. Washington Sea Grant. (University of Washington Press, 1979)

  • Gadomski, D. M. & Caddell, S. M. Effects of temperature on the development and survival of eggs of four coastal California fishes. Fish. Bull. 94, 41–48 (1996).

    Google Scholar 

  • Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 18, 82–92 (2012).

    Article 
    ADS 

    Google Scholar 

  • Rombough, P. The effects of temperature on embryonic and larval development. In Global Warming: Implications for Freshwater and Marine Fish (Society for Experimental Biology Seminar Series) (eds Wood, C. & McDonald, D.) 177–224 (Cambridge University Press, 1997).

    Chapter 

    Google Scholar 

  • Bownds, C., Wilson, R. & Marshall, D. J. Why do colder mothers produce larger eggs? An optimality approach. J. Exp. Biol. 213, 3796–3801 (2010).

    Article 

    Google Scholar 

  • Longo, G. C. et al. Strong population differentiation in lingcod ( Ophiodon elongatus ) is driven by a small portion of the genome. Evol. Appl. 13, 2536–2554 (2020).

    Article 
    CAS 

    Google Scholar 

  • Silberberg, K. R., Laidig, T. E., Adams, P. B. & Albin, D. Analysis of maturity in lingcod, Ophiodon elongatus. California Fish Game 87, 139–152 (2001).

    Google Scholar 

  • Palumbi, S. R. Why mothers matter. Nature 430, 621–622 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).

    Article 

    Google Scholar 

  • Miller, D. J., & Geibel, J. J. Summary of Blue Rockfish and Lingcod Life Histories, a Reef Ecology Study, and Giant Kelp, Macrocystis Pyrifera, Experiments in Monterey Bay, California. (State of California, Resources Agency, Department of Fish and Game, 1973).

  • Low, C. J. & Beamish, R. J. A study of the nesting behavior of lingcod (Ophiodon elongatus) in the strait of Georgia, British Columbia. Can. Fish. Mar. Serv. Tech. Rep. 843, 1–10 (1978).

    Google Scholar 

  • King, J. R. & Withler, R. E. Male nest site fidelity and female serial polyandry in lingcod (Ophiodon elongatus, Hexagrammidae): Lingcod nest site fidelity. Mol. Ecol. 14, 653–660 (2005).

    Article 

    Google Scholar 

  • Withler, R. E. et al. Polygamous mating and high levels of genetic variation in lingcod, Ophiodon elongatus of the Strait of Georgia, British Columbia. In Genetics of Subpolar Fish and Invertebrates 345–357 (Springer, 2004).

    Google Scholar 

  • Perkins, M. J. et al. Application of nitrogen and carbon stable isotopes (δ15N and δ13C) to quantify food chain length and trophic structure. PLoS ONE 9, e93281 (2014).

    Article 
    ADS 

    Google Scholar 

  • Earth Systems Research Laboratory (ESRL). NOAA’s Ocean Climate Change Web Portal. http://www.esrl.noaa.gov/psd/ipcc/ocn/ (2019).

  • Feely, R., Doney, S. & Cooley, S. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).

    Article 

    Google Scholar 

  • Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Olito, C., White, C. R., Marshall, D. J. & Barneche, D. R. Estimating monotonic rates from biological data using local linear regression. J. Exp. Biol. 1, 148775. https://doi.org/10.1242/jeb.148775 (2017).

    Article 

    Google Scholar 

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Food for thought, thought for food

    Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats