Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).
Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).
Google Scholar
Connell, J. H. & Lowman, M. D. Low-diversity tropical rain forests: some possible mechanisms for their existence. Am. Nat. 134, 88–119 (1989).
Google Scholar
Brundrett, M. in Advances in Ecological Research, Vol. 21 (eds Begon M. et al.) 171–313 (Academic Press, 1991).
Allen, E. B. et al. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170, 47–62 (1995).
Google Scholar
Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2015).
Google Scholar
Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).
Google Scholar
Teste, F. P. et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).
Google Scholar
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
Google Scholar
Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2 (U.S. Department of Agriculture, Forest Service, 2018).
Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358 (2019).
Google Scholar
Jo, I. & Fei, S. Responses of Dominant Tree-Mycorrhizal Associations to Anthropogenic Impacts in the USA (Purdue Univ. Research Repository, 2019).
Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).
Google Scholar
Laliberté, E., Zemunik, G. & Turner, B. L. Environmental filtering explains variation in plant diversity along resource gradients. Science 345, 1602–1605 (2014).
Google Scholar
Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).
Google Scholar
Cleland, D. T. et al. Ecological Subregions: Sections and Subsections for the Conterminous United States. General Technical Report WO-76D (U.S. Department of Agriculture, 2007).
Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. Camb. Philos. Soc. 94, 1857–1880 (2019).
Google Scholar
Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).
Google Scholar
Mariotte, P. et al. Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).
Google Scholar
Zemunik, G., Turner, B. L., Lambers, H. & Laliberté, E. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat. Plants 1, 15050 (2015).
Google Scholar
van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).
Google Scholar
Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).
Google Scholar
Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 103, 1224–1232 (2015).
Google Scholar
Hartnett, D. C. & Wilson, G. W. T. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244, 319–331 (2002).
Google Scholar
Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).
Google Scholar
Peh, K. S.-H., Lewis, S. L. & Lloyd, J. Mechanisms of monodominance in diverse tropical tree-dominated systems. J. Ecol. 99, 891–898 (2011).
Google Scholar
ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).
Google Scholar
Newman, E. I. & Reddell, P. Relationship between mycorrhizal infection and diversity in vegetation: evidence from the Great Smoky Mountains. Funct. Ecol. 2, 259–262 (1988).
Google Scholar
Bahram, M. et al. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytol. 227, 1189–1199 (2020).
Google Scholar
Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).
Google Scholar
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
Google Scholar
Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).
Google Scholar
Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl Acad. Sci. USA 112, 5081–5086 (2015).
Google Scholar
Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar
Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’ R package version 1.14.0 https://CRAN.R-project.org/package=data.table (2017).
Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.2 https://CRAN.R-project.org/package=dplyr (2017).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Google Scholar
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 3.3.3 https://CRAN.R-project.org/package=ggpubr (2018).
Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.1 https://CRAN.R-project.org/package=ggspatial (2018).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5 https://CRAN.R-project.org/package=raster (2019).
Wickham, H. Reshaping data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).
Google Scholar
Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).
Google Scholar
Wickham, H. & Henry, L. tidyr: Tidy messy data. R package version 1.1.0 https://CRAN.R-project.org/package=tidyr (2019).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 https://cran.r-project.org/web/packages/vegan/index.html (2017).
Forest Inventory and Analysis; https://apps.fs.usda.gov/fia/datamart/CSV/ENTIRE.zip
Carteron, A. alexiscarter/mycorrhiza_tree_diversity: custom code https://doi.org/10.5281/ZENODO.5713273 (2021).
Source: Ecology - nature.com