in

Narrowly distributed taxa are disproportionately informative for conservation planning

  • 1.

    Balmford, A. & Gaston, K. J. Why biodiversity surveys are good value How the ‘terror crocodile’ grew so big. Nature 398, 204–205 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Rondinini, C., Marco, M. D., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: Long-term viability of the IUCN Red List Making the Red List financially. Conserv. Lett. 7, 126–130 (2014).

    Article 

    Google Scholar 

  • 3.

    Braithwaite, M. E. & Walker, K. J. 50 Years of Mapping the British and Irish Flora 1962–2012 (Botanical Society of the British Isles, 2012).

    Google Scholar 

  • 4.

    Barrett, G., Silcocks, A., Barry, S., Cunningham, R. & Poulter, R. The New Atlas of Australian Birds (Royal Australasian Ornithologists Union, 2003).

    Google Scholar 

  • 5.

    Biodiversity Center of Japan. Animal Distribution Atlas of Japan (Ministry of Environment Japan, 2010).

    Google Scholar 

  • 6.

    McGowan, K. & Corwin, K. The Second Atlas of Breeding Birds in New York State (Comstock Publishing Associates, 2008).

    Google Scholar 

  • 7.

    Rhoads, A. F. & Klein, W. M. J. The vascular Flora of Pennsylvenia: Annoted Checklist and Atlas (American Philosophical Society, 1993).

    Google Scholar 

  • 8.

    Baker, H. et al. Population estimates of birds in Great Britain and the United Kingdom British Birds. Br. Birds 99, 25–44 (2006).

    Google Scholar 

  • 9.

    Bonn, A., Rodrigues, A. S. L. & Gaston, K. J. Threatened and endemic species: Are they good indicators of patterns of biodiversity on a national scale?. Ecol. Lett. 5, 733–741 (2002).

    Article 

    Google Scholar 

  • 10.

    Albuquerque, F. & Beier, P. Rarity-weighted richness: A simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10, e0119905 (2015).

    Article 

    Google Scholar 

  • 11.

    Williams, P. et al. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conserv. Biol. 10, 155–174 (1996).

    Article 

    Google Scholar 

  • 12.

    Platts, P. J. et al. Conservation implications of omitting narrow-ranging taxa from species distribution models, now and in the future. Divers. Distrib. 20, 1307-1320. (2014).

    Article 

    Google Scholar 

  • 13.

    Kujala, H., Moilanen, A. & Gordon, A. Spatial characteristics of species distributions as drivers in conservation prioritization. Methods Ecol. Evol. 9, 1121–1132 (2018).

    Article 

    Google Scholar 

  • 14.

    Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. Camb. Philos. Soc. 88, 443–464 (2013).

    Article 

    Google Scholar 

  • 15.

    Lawler, J. J., White, D., Sifneos, J. C. & Master, L. L. Rare species and the use of indicator groups for conservation planning. Conserv. Biol. 17, 875–882 (2003).

    Article 

    Google Scholar 

  • 16.

    Kujala, H., Lahoz-Monfort, J. J., Elith, J. & Moilanen, A. Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods Ecol. Evol. 9, 2249–2261 (2018).

    Article 

    Google Scholar 

  • 17.

    Grantham, H. S. et al. Diminishing return on investment for biodiversity data in conservation planning. Conserv. Lett. 1, 190–198 (2008).

    Article 

    Google Scholar 

  • 18.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Moilanen, A., Wilson, K. A. & Possingham, H. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford University Press, 2009).

    Google Scholar 

  • 20.

    Akasaka, M., Kadoya, T., Ishihama, F., Fujita, T. & Fuller, R. A. Smart protected area placement decelerates biodiversity loss: A representation-extinction feedback leads rare species to extinction. Conserv. Lett. 10, 539–546 (2017).

    Article 

    Google Scholar 

  • 21.

    Boakes, E., McGowan, P. & Fuller, R. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    Article 

    Google Scholar 

  • 22.

    Williams, P. H., Margules, C. R. & Hilbert, D. W. Data requirements and data sources for biodiversity priority area selection. J. Biosci. 27, 327–338 (2002).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Da Fonseca, G. A. B. et al. … following Africa’s lead Community groups could. Nature 405, 393–394 (2000).

    Article 

    Google Scholar 

  • 24.

    Possingham, H. P., Grantham, H. & Rondinini, C. How can you conserve species that haven’t been found? Commentary. J. Biogeogr. 34, 758–759 (2007).

    Article 

    Google Scholar 

  • 25.

    Ohlemuller, R. et al. The coincidence of climatic and species rarity: High risk to small-range species from climate change. Biol. Lett. 4, 568–572 (2008).

    Article 

    Google Scholar 

  • 26.

    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. USA. 106, 9322–9327 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Raes, N., Roos, M. C., Slik, J. W. F., Van Loon, E. E. & Steege, H. T. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography (Cop.) 32, 180–192 (2009).

    Article 

    Google Scholar 

  • 28.

    Tulloch, A. I. T., Mustin, K., Possingham, H. P., Szabo, J. K. & Wilson, K. A. To boldly go where no volunteer has gone before: predicting volunteer activity to prioritize surveys at the landscape scale. Divers. Distrib. 19, 465–480 (2013).

    Article 

    Google Scholar 

  • 29.

    Rodewald, A. D., Strimas-Mackey, M., Schuster, R. & Arcese, P. Tradeoffs in the value of biodiversity feature and cost data in conservation prioritization. Sci. Rep. 9, 5921 (2019).

    Article 

    Google Scholar 

  • 30.

    Rabinowitz, D. Seven forms of rarity. In The biological aspects of rare plant conservation. (ed. Synge, H.) 205–217 (Wiley, Chichester, 1981).

    Google Scholar 

  • 31.

    Ministry of Environment. Red Data Book 2014: Plants I (Gyousei, 2015).

    Google Scholar 

  • 32.

    Ministry of Environment. Red Data Book 2014: Plants II (Gyousei, 2015).

    Google Scholar 

  • 33.

    Yahara, T. et al. Red list of Japanese vascular plants: Summary of methods and results. Proc. Japan. Soc. Plant Taxon. 13, 89–96 (1998).

    Google Scholar 

  • 34.

    Ball, I. R., Possingham, H. P. & Watts, M. Marxan and relatives: Software for spatial conservation prioritisation. In Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 185–195 (Oxford University Press, 2009).

    Google Scholar 

  • 35.

    Yoshioka, A., Akasaka, M. & Kadoya, T. Spatial prioritization for biodiversity restoration: A simple framework referencing past species distributions. Restor. Ecol. 22, 185–195 (2014).

    Article 

    Google Scholar 

  • 36.

    Naidoo, R. et al. Integrating economic costs into conservation planning. Trends Ecol. Evol. 21, 681–687 (2006).

    Article 

    Google Scholar 

  • 37.

    Japan Statistics. Population of Japan: Final Report of the 2005 Population Census. (Statistics Japan, 2010).

  • 38.

    R Core Team. R 4.0.0. (R Foundation for Statistical Computing, 2020).

  • 39.

    Zweig, M. H. & Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Hermoso, V., Ward, D. P. & Kennard, M. J. Using water residency time to enhance spatio-temporal connectivity for conservation planning in seasonally dynamic freshwater ecosystems. J. Appl. Ecol. 49, 1028–1035 (2012).

    Article 

    Google Scholar 

  • 41.

    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).

    Article 

    Google Scholar 

  • 42.

    Schuster, R., Hanson, J. O., Strimas-Mackey, M. & Bennett, J. R. Integer linear programming outperforms simulated annealing for solving conservation planning problems. PeerJ 8, e9258. https://doi.org/10.7717/peerj.9258 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Storing frozen water to adapt to climate change

    Climate change threatens native potential agroforestry plant species in Brazil