Balmford, A. & Gaston, K. J. Why biodiversity surveys are good value How the ‘terror crocodile’ grew so big. Nature 398, 204–205 (1999).
Google Scholar
Rondinini, C., Marco, M. D., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: Long-term viability of the IUCN Red List Making the Red List financially. Conserv. Lett. 7, 126–130 (2014).
Google Scholar
Braithwaite, M. E. & Walker, K. J. 50 Years of Mapping the British and Irish Flora 1962–2012 (Botanical Society of the British Isles, 2012).
Barrett, G., Silcocks, A., Barry, S., Cunningham, R. & Poulter, R. The New Atlas of Australian Birds (Royal Australasian Ornithologists Union, 2003).
Biodiversity Center of Japan. Animal Distribution Atlas of Japan (Ministry of Environment Japan, 2010).
McGowan, K. & Corwin, K. The Second Atlas of Breeding Birds in New York State (Comstock Publishing Associates, 2008).
Rhoads, A. F. & Klein, W. M. J. The vascular Flora of Pennsylvenia: Annoted Checklist and Atlas (American Philosophical Society, 1993).
Baker, H. et al. Population estimates of birds in Great Britain and the United Kingdom British Birds. Br. Birds 99, 25–44 (2006).
Bonn, A., Rodrigues, A. S. L. & Gaston, K. J. Threatened and endemic species: Are they good indicators of patterns of biodiversity on a national scale?. Ecol. Lett. 5, 733–741 (2002).
Google Scholar
Albuquerque, F. & Beier, P. Rarity-weighted richness: A simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10, e0119905 (2015).
Google Scholar
Williams, P. et al. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conserv. Biol. 10, 155–174 (1996).
Google Scholar
Platts, P. J. et al. Conservation implications of omitting narrow-ranging taxa from species distribution models, now and in the future. Divers. Distrib. 20, 1307-1320. (2014).
Google Scholar
Kujala, H., Moilanen, A. & Gordon, A. Spatial characteristics of species distributions as drivers in conservation prioritization. Methods Ecol. Evol. 9, 1121–1132 (2018).
Google Scholar
Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. Camb. Philos. Soc. 88, 443–464 (2013).
Google Scholar
Lawler, J. J., White, D., Sifneos, J. C. & Master, L. L. Rare species and the use of indicator groups for conservation planning. Conserv. Biol. 17, 875–882 (2003).
Google Scholar
Kujala, H., Lahoz-Monfort, J. J., Elith, J. & Moilanen, A. Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods Ecol. Evol. 9, 2249–2261 (2018).
Google Scholar
Grantham, H. S. et al. Diminishing return on investment for biodiversity data in conservation planning. Conserv. Lett. 1, 190–198 (2008).
Google Scholar
Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).
Google Scholar
Moilanen, A., Wilson, K. A. & Possingham, H. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford University Press, 2009).
Akasaka, M., Kadoya, T., Ishihama, F., Fujita, T. & Fuller, R. A. Smart protected area placement decelerates biodiversity loss: A representation-extinction feedback leads rare species to extinction. Conserv. Lett. 10, 539–546 (2017).
Google Scholar
Boakes, E., McGowan, P. & Fuller, R. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).
Google Scholar
Williams, P. H., Margules, C. R. & Hilbert, D. W. Data requirements and data sources for biodiversity priority area selection. J. Biosci. 27, 327–338 (2002).
Google Scholar
Da Fonseca, G. A. B. et al. … following Africa’s lead Community groups could. Nature 405, 393–394 (2000).
Google Scholar
Possingham, H. P., Grantham, H. & Rondinini, C. How can you conserve species that haven’t been found? Commentary. J. Biogeogr. 34, 758–759 (2007).
Google Scholar
Ohlemuller, R. et al. The coincidence of climatic and species rarity: High risk to small-range species from climate change. Biol. Lett. 4, 568–572 (2008).
Google Scholar
Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. USA. 106, 9322–9327 (2009).
Google Scholar
Raes, N., Roos, M. C., Slik, J. W. F., Van Loon, E. E. & Steege, H. T. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography (Cop.) 32, 180–192 (2009).
Google Scholar
Tulloch, A. I. T., Mustin, K., Possingham, H. P., Szabo, J. K. & Wilson, K. A. To boldly go where no volunteer has gone before: predicting volunteer activity to prioritize surveys at the landscape scale. Divers. Distrib. 19, 465–480 (2013).
Google Scholar
Rodewald, A. D., Strimas-Mackey, M., Schuster, R. & Arcese, P. Tradeoffs in the value of biodiversity feature and cost data in conservation prioritization. Sci. Rep. 9, 5921 (2019).
Google Scholar
Rabinowitz, D. Seven forms of rarity. In The biological aspects of rare plant conservation. (ed. Synge, H.) 205–217 (Wiley, Chichester, 1981).
Ministry of Environment. Red Data Book 2014: Plants I (Gyousei, 2015).
Ministry of Environment. Red Data Book 2014: Plants II (Gyousei, 2015).
Yahara, T. et al. Red list of Japanese vascular plants: Summary of methods and results. Proc. Japan. Soc. Plant Taxon. 13, 89–96 (1998).
Ball, I. R., Possingham, H. P. & Watts, M. Marxan and relatives: Software for spatial conservation prioritisation. In Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 185–195 (Oxford University Press, 2009).
Yoshioka, A., Akasaka, M. & Kadoya, T. Spatial prioritization for biodiversity restoration: A simple framework referencing past species distributions. Restor. Ecol. 22, 185–195 (2014).
Google Scholar
Naidoo, R. et al. Integrating economic costs into conservation planning. Trends Ecol. Evol. 21, 681–687 (2006).
Google Scholar
Japan Statistics. Population of Japan: Final Report of the 2005 Population Census. (Statistics Japan, 2010).
R Core Team. R 4.0.0. (R Foundation for Statistical Computing, 2020).
Zweig, M. H. & Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993).
Google Scholar
Hermoso, V., Ward, D. P. & Kennard, M. J. Using water residency time to enhance spatio-temporal connectivity for conservation planning in seasonally dynamic freshwater ecosystems. J. Appl. Ecol. 49, 1028–1035 (2012).
Google Scholar
Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).
Google Scholar
Schuster, R., Hanson, J. O., Strimas-Mackey, M. & Bennett, J. R. Integer linear programming outperforms simulated annealing for solving conservation planning problems. PeerJ 8, e9258. https://doi.org/10.7717/peerj.9258 (2020).
Google Scholar
Source: Ecology - nature.com