in

Native range estimates for red-listed vascular plants

  • Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, 2005).

  • Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).

    Google Scholar 

  • Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).

    Google Scholar 

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science (80-.). 353, 288–291 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (United Nations, 2015).

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (80-.). 366, eaax3100 (2019).

  • Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science (80-.). 344, 1109–1113 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Chaudhary, A. & Brooks, T. M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 121, 178–187 (2019).

    Google Scholar 

  • Pereira, H. M., Ziv, G. & Miranda, M. Countryside Species-Area Relationship as a Valid Alternative to the Matrix-Calibrated Species-Area Model. Conserv. Biol. 28, 874–876 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lomolino, M. V & Heaney, L. R. Frontiers of Biogeography: New Directions in the Geography of Nature. (Sinauer Associates Inc. Publishers, 2004).

  • World Wildlife Fund. WildFinder: Online database of species distributions. http://www.worldwildlife.org/WildFinder (2006).

  • BirdLife International. IUCN Red List for birds. http://www.birdlife.org (2019).

  • IUCN. The IUCN Red List of Threatened Species. Version 2021-1 https://www.iucnredlist.org (2021).

  • Curran, M. et al. Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environ. Sci. Technol. 45, 70–79 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woods, J. S. et al. Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. Int. J. Life Cycle Assess. 23, 1995–2006 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069 (2013).

    Google Scholar 

  • Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.). 43, 1261–1277 (2020).

    Google Scholar 

  • Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions. International Working Group on Taxonomic Databases (TDWG) https://www.tdwg.org/standards/wgsrpd/ (2001).

  • GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).

  • Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.0). http://biodiversityinformatics.amnh.org/open_source/maxent/ (2016).

  • Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. Proc. Twenty-first Int. Conf. Mach. Learn. 655–662 (2004).

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography (Cop.). 40, 887–893 (2017).

    Google Scholar 

  • Reddy, S. & Dávalos, L. M. Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30, 1719–1727 (2003).

    Google Scholar 

  • Hortal, J., Jiménez-Valverde, A., Gómez, J. F., Lobo, J. M. & Baselga, A. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117, 847–858 (2008).

    Google Scholar 

  • Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).

    Google Scholar 

  • Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).

    Google Scholar 

  • Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).

    Google Scholar 

  • ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science (80-.). 342, 1243092 (2013).

    Google Scholar 

  • Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential Consequences of Regional Species Loss for Global Species Richness: A Quantitative Approach for Estimating Global Extinction Probabilities. Environ. Sci. Technol. 53, 4728–4738 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gade, A. L., Hauschild, M. Z. & Laurent, A. Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assessment. Sci. Total Environ. 761, 143280 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Géron, C. et al. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biol. Invasions 23, 1765–1779 (2021).

    Google Scholar 

  • Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).

    PubMed 

    Google Scholar 

  • Bachman, S., Moat, J., Hill, A., de la Torre, J. & Scott, B. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. Zookeys 150, 117–126 (2011).

    Google Scholar 

  • Cardoso, P. red – an R package to facilitate species red list assessments according to the IUCN criteria. Biodivers. Data J. 5, e20530 (2017).

    Google Scholar 

  • Lee, C. K. F., Keith, D. A., Nicholson, E. & Murray, N. J. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography (Cop.). 42, 1050–1055 (2019).

    Google Scholar 

  • Bachman, S., Walker, B., Barrios, S., Copeland, A. & Moat, J. Rapid Least Concern: towards automating Red List assessments. Biodivers. Data J. 8 (2020).

  • POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/ (2021).

  • Chamberlain, S. et al. taxize: Taxonomic information from around the web. R package version 0.9.98. https://github.com/ropensci/taxize (2020).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).

  • ITIS. Integrated Taxonomic Information System. https://www.itis.gov/ (2021).

  • Wickham, H. rvest: Easily Harvest (Scrape) Web Pages. R package version 0.3.5. https://cran.r-project.org/package=rvest (2019).

  • Desmet, P. & Page, R. WGSRPD. GitHub repository https://github.com/tdwg/wgsrpd (2018).

  • Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).

  • GBIF. GBIF Occurrence Download. https://doi.org/10.15468/dl.uvd56q (2021).

  • Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35–41 (2020).

    ADS 

    Google Scholar 

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).

  • Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.). 29, 773–785 (2006).

    Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).

    Google Scholar 

  • Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.). 31, 161–175 (2008).

    Google Scholar 

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  • Anderson, R. P. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393 (2010).

    Google Scholar 

  • Själander, M., Jahre, M., Tufte, G. & Reissmann, N. EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure. arXiv 1–4 (2019).

  • Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017).

  • Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).

  • ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography (Cop.). 38, 541–545 (2015).

    Google Scholar 

  • Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. in 2nd International Symposium on Information Theory (eds. Petrov, B. N. & Csaki, F.) 267–281 (Akademia Kiado, 1973).

  • Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).

    MathSciNet 
    MATH 

    Google Scholar 

  • Sugiura, N. Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun. Stat. – Theory Methods 7, 13–26 (1978).

    MATH 

    Google Scholar 

  • Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).

    Google Scholar 

  • Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    PubMed 

    Google Scholar 

  • Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17 (1950).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Borgelt, J., Sicacha-Parada, J., Skarpaas, O. & Verones, F. Native range estimates for red-listed vascular plants. Dryad, Dataset https://doi.org/10.5061/dryad.qbzkh18h9 (2022).

  • Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression. The Statistician 45 (Wiley, 2013).

  • Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).

    Google Scholar 

  • Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision‐recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10, 565–577 (2019).

    Google Scholar 

  • Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    PubMed 

    Google Scholar 

  • Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Br. 12, 662–666 (2017).

    Google Scholar 

  • Rivers, M. C. Laburnum anagyroides. The IUCN Red List of Threatened Species 2017: e.T79919483A79919650 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T79919483A79919650.en (2017).

  • Botanic Gardens Conservation International Group & IUCN SSC Global Tree Specialist. Terminalia macrostachya. The IUCN Red List of Threatened Species 2019: e.T150118895A150118897 https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T150118895A150118897.en (2019).

  • Heil, K., Terry, M. & Corral-Díaz, R. Mammillaria grahamii (amended version of 2013 assessment). The IUCN Red List of Threatened Species 2017: e.T152723A121546147 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T152723A121546147.en (2017).

  • Brooker, M. & Kleinig, D. Field Guide to Eucalypts. (Bloomings Books, 2006).

  • Koopman, M. M. A synopsis of the Malagasy endemic genus Megistostegium Hochr. (Hibisceae, Malvaceae). Adansonia 33, 101–113 (2011).

    Google Scholar 

  • World Conservation Monitoring Centre. Memecylon elegantulum. The IUCN Red List of Threatened Species 1998: e.T32597A9713234 https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32597A9713234.en (1998).

  • Landrum, L. R. A revision of the Psidium salutare complex (Myrtaceae). SIDA, Contrib. to Bot. 20, 1449–1469 (2003).

    Google Scholar 

  • Tropical Plants Database. Ken Fern. tropical.theferns.info https://tropical.theferns.info/viewtropical.php?id=Psidium+salutare (2021).

  • Bernal, R., Gradstein, S. R. & Celis, M. Siparuna conica S.S.Renner & Hausner. Catálogo de plantas y líquenes de Colombia http://catalogoplantasdecolombia.unal.edu.co (2015).

  • Renner, S. S. & Hausner, G. New Species of Siparuna (Monimiaceae) II. Seven New Species from Ecuador and Colombia. Missouri Bot. Gard. Press 6, 103–116 (1996).

    Google Scholar 

  • Melendo, M., Giménez, E., Cano, E., Mercado, F. G. & Valle, F. The endemic flora in the south of the Iberian Peninsula: taxonomic composition, biological spectrum, pollination, reproductive mode and dispersal. Flora – Morphol. Distrib. Funct. Ecol. Plants 198, 260–276 (2003).

    Google Scholar 

  • Chari, L. D., Martin, G. D., Steenhuisen, S.-L., Adams, L. D. & Clark, V. R. Biology of Invasive Plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Sci. Manag. 13, 120–142 (2020).

    Google Scholar 

  • Sasidharan, N. Amomum pterocarpum Thwaites. India Biodiversity Portal https://indiabiodiversity.org/species/show/258864#habitat-and-distribution (2013).

  • Contu, S. Amomum pterocarpum. The IUCN Red List of Threatened Species 2013: e.T44393013A44450020 https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T44393013A44450020.en (2013).

  • Babyrose Devi, N., Das, A. & Singh, P. Amomum Pterocarpum (Zingiberaceae): a new record in the flora of Manipur. Int. J. Adv. Res. 6, 546–549 (2018).

    Google Scholar 

  • Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–9 (2008).

    PubMed 

    Google Scholar 

  • Gibbs, D. & Khela, S. Magnolia pugana. The IUCN Red List of Threatened Species 2014: e.T194806A2363344 https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T194806A2363344.en (2014).

  • Sayer, C. Vallesia glabra. The IUCN Red List of Threatened Species 2015: e.T62543A72668627 https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T62543A72668627.en (2015).

  • Sánchez Gómez, P., Stevens, D., Fennane, M., Gardner, M. & Thomas, P. Tetraclinis articulata. The IUCN Red List of Threatened Species 2011: e.T30318A9534227 https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T30318A9534227.en (2011).

    Article 

    Google Scholar 

  • Stritch, L., Roy, S., Shaw, K. & Wilson, B. Corylus cornuta (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T194448A115337731 https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T194448A2336319.en (2016).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 

  • Rivers, M. C. Cotoneaster cambricus. The IUCN Red List of Threatened Species 2017: e.T102827479A102827485 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T102827479A102827485.en (2017).

  • RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).

  • Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).

  • Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).

  • Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).

  • Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).

  • Phillips, S. J. & Elith, J. POC plots: calibrating species distribution models with presence-only data. Ecology 91, 2476–2484 (2010).

    PubMed 

    Google Scholar 

  • Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry

    New program bolsters innovation in next-generation artificial intelligence hardware