in

Nature-based solutions in mountain catchments reduce impact of anthropogenic climate change on drought streamflow

  • IPCC. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge University Press. In Press, 2021).

  • Otto, F. E. L. et al. Toward an inventory of the impacts of human-induced climate change. Bull. Am. Meteorol. Soc. 101, E1972–E1979 (2020).

    Google Scholar 

  • Stanners, D. et al. in Sustainability Indicators. A Scientific Assessment (eds Moldan, B., Hak, T. & Dahl, A. L.) 127–144 (Island Press, 2007).

  • Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 98, 20–29 (2019).

    Google Scholar 

  • Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15513 (2021).

  • Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).

    CAS 

    Google Scholar 

  • Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).

    Google Scholar 

  • Gómez Martín, E., Máñez Costa, M. & Schwerdtner Máñez, K. An operationalized classification of Nature Based Solutions for water-related hazards: from theory to practice. Ecol. Econ. 167 https://doi.org/10.1016/j.ecolecon.2019.106460 (2020).

  • Doswald, N. et al. Effectiveness of ecosystem-based approaches for adaptation: review of the evidence-base. Clim. Dev. 6, 185–201 (2014).

    Google Scholar 

  • Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15310 (2020).

  • Rebelo, A. J., Holden, P. B., Esler, K. & New, M. G. Benefits of water-related ecological infrastructure investments to support sustainable land-use: a review of evidence from critically water-stressed catchments in South Africa. R. Soc. Open Sci. 8, 201402 (2021).

    Google Scholar 

  • Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 11, 989–1000 (2021).

    Google Scholar 

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 

    Google Scholar 

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS 

    Google Scholar 

  • Koch, A., Brierley, C. & Lewis, S. L. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18, 2627–2647 (2021).

    CAS 

    Google Scholar 

  • Girardin, C. A. J. et al. Nature-based solutions can help cool the planet – if we act now. Nature 593, 191–194 (2021).

    CAS 

    Google Scholar 

  • Sudmeier-Rieux, K. et al. Scientific evidence for ecosystem-based disaster risk reduction. Nat. Sustain. 4, 803–810 (2021).

    Google Scholar 

  • Otto, F. E. L. Attribution of weather and climate events. Annu. Rev. Environ. Resources 42, 627–646 (2017).

    Google Scholar 

  • Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).

    Google Scholar 

  • Herring, S. C., Christidis, N., Hoell, A., Hoerling, M. P. & Stott, P. A. Explaining extreme events of 2019 from a climate perspective. Bull. Amer. Meteorol. Soc. 102, S1–S112 (2021).

  • Otto, F. E. L. et al. Challenges to understanding extreme weather changes in lower income countries. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/bams-d-19-0317.1 (2020).

  • Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).

    CAS 

    Google Scholar 

  • Kay, A. L., Crooks, S. M., Pall, P. & Stone, D. A. Attribution of Autumn/Winter 2000 flood risk in England to anthropogenic climate change: a catchment-based study. J. Hydrol. 406, 97–112 (2011).

    Google Scholar 

  • Schaller, N. et al. Human influence on climate in the 2014 southern England winter floods and their impacts. Nat. Clim. Change 6, 627–634 (2016).

    Google Scholar 

  • Wolski, P., Stone, D., Tadross, M., Wehner, M. & Hewitson, B. Attribution of floods in the Okavango basin, Southern Africa. J. Hydrol. 511, 350–358 (2014).

    Google Scholar 

  • Ross, A. C. et al. Anthropogenic influences on extreme annual streamflow into Chesapeake Bay from the Susquehanna River. Bull. Am. Meteorol. Soc. 102, S25–S32 (2021).

  • Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).

    Google Scholar 

  • Botai, C., Botai, J., de Wit, J., Ncongwane, K. & Adeola, A. Drought Characteristics over the Western Cape Province, South Africa. Water https://doi.org/10.3390/w9110876 (2017).

  • Wolski, P. How severe is Cape Town’s “Day Zero” drought? Significance 15, 24–27 (2018).

    Google Scholar 

  • Stafford, L., Shemie, D., Kroeger, T., Baker, T. & Apse, C. The Greater Cape Town Water Fund. Assessing the return on investment for Ecological Infrastructure restoration. Business case. (The Nature Conservancy, 2018).

  • Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae9f9 (2018).

  • Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town “Day Zero” drought in the 21st century. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2009144117 (2020).

  • Van Wilgen, B. W., Measey, J., Richardson, D. M., Wilson, J. R. & Zengeya, T. A. Biological Invasions in South Africa (Springer Nature, 2020).

  • Le Maitre, D. et al. Impacts of plant invasions on terrestrial water flows in South Africa in Biological Invasions in South Africa (eds van Wilgen, B. W., Measey. J., Richardson, D. M., Wilson, J. R. & Zengeya, T. A.) 431–457 (Springer, 2020).

  • Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).

    Google Scholar 

  • Dennedy-Frank, P. J. & Gorelick, S. M. Insights from watershed simulations around the world: watershed service-based restoration does not significantly enhance streamflow. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2019.101938 (2019).

  • Calder, I. D. & Dye, P. Hydrological impacts of invasive alien plants. Land Use Water Resour. Res. 7, 1–12 (2001).

    Google Scholar 

  • Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).

    Google Scholar 

  • Farley, K. A., Jobbagy, E. G. & Jackson, R. B. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Change Biol. 11, 1565–1576 (2005).

    Google Scholar 

  • Jackson, R. B. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

  • Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: a systematic review. PLoS ONE 12, e0183210 (2017).

    Google Scholar 

  • Sitzia, T., Campagnaro, T., Kowarik, I. & Trentanovi, G. Using forest management to control invasive alien species: helping implement the new European regulation on invasive alien species. Biol. Invasions 18, 1–7 (2015).

    Google Scholar 

  • Richardson, D. M. & Rejmánek, M. Trees and shrubs as invasive alien species – a global review. Divers. Distrib. 17, 788–809 (2011).

    Google Scholar 

  • Everard, M. et al. Can control of invasive vegetation improve water and rural livelihood security in Nepal? Ecosyst. Serv. 32, 125–133 (2018).

    Google Scholar 

  • Everard, M. Can management of ‘thirsty’ alien trees improve water security in semi-arid India? Sci. Total Environ. 704, 135451 (2020).

    CAS 

    Google Scholar 

  • Archer, S. R. et al. Woody plant encroachment: causes and consequences in Rangeland Systems Springer Series on Environmental Management (ed. Briske, D. D.) Chapter 2, 25–84 (2017).

  • Wood, M. Bootstrapped confidence intervals as an approach to statistical inference. Organ. Res. Methods 8, 454–470 (2016).

    Google Scholar 

  • Tan, S. H. The correct interpretation of confidence intervals. Proc. Singapore Healthc. 19 (2010).

  • Coetsee, C., Gray, E. F., Wakeling, J., Wigley, B. J. & Bond, W. J. Low gains in ecosystem carbon with woody plant encroachment in a South African savanna. J. Trop. Ecol. 29, 49–60 (2012).

    Google Scholar 

  • Stevens, N., Erasmus, B. F., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2015.0437 (2016).

  • Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).

    CAS 

    Google Scholar 

  • Forsyth, G. G., Le Maitre, D. C., Smith, J. & Lotter, D. Upper Berg River Catchment (G10A) Management Unit Control Plan. (Natural Resources Management (NRM) Department of Environmental Affairs, 2016).

  • Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R. & Cooper, H. M. Land‐atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Adv. 2, e2020AV000283 (2021).

    Google Scholar 

  • Rejmánek, M., Richardson, D. M. & Pysek, P. Trees and shrubs as invasive alien species – 2013 update of the global database. Divers. Distrib. 19, 1093–1094 (2013).

    Google Scholar 

  • Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    CAS 

    Google Scholar 

  • Ziervogel, G. et al. Climate change impacts and adaptation in South Africa. Wiley Interdiscip. Rev. Clim. Change 5, 605–620 (2014).

    Google Scholar 

  • Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change https://doi.org/10.1007/s10113-021-01808-9 (2021).

  • Dow, K., Berkhout, F. & Preston, B. L. Limits to adaptation to climate change: a risk approach. Curr. Opin. Environ. Sustain. 5, 384–391 (2013).

    Google Scholar 

  • Manning, J. & Goldblatt, P. Plants of the greater Cape Floristic Region 1: the Core Cape Flora., (South African National Biodiversity Institute, 2012).

  • Nel, J. L. et al. Strategic water source areas for urban water security: Making the connection between protecting ecosystems and benefiting from their services. Ecosyst. Serv. 28, 251–259 (2017).

    Google Scholar 

  • Wolski, P. What Cape Town learned from its drought. Bull. At. Sci. https://thebulletin.org/2018/04/what-cape-town-learned-from-its-drought/ (2018).

  • D. W. S. Cape Town River Systems State of Dams on 2021-08-16. Department of Water and Sanitation. Republic of South Africa. https://www.dws.gov.za/Hydrology/Weekly/RiverSystems.aspx?river=CT (2021).

  • Rebelo, A. J. et al. The hydrological benefits of restoration: a modelling study of alien tree clearing in four mountain catchments in South Africa. Preprint at J. Hydrol. https://doi.org/10.21203/rs.3.rs-1316834/v1.

  • DWAF. The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Report 9 (Groundwater Model): Volume 9 (Breede River Alluvium Aquifer Model). (Department of Water Affairs and Forestry, 2008).

  • DWAF. The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Report 9 (Groundwater Model): Volume 3 (Regional Conceptual Model). (Department of Water Affairs and Forestry, 2008).

  • Blake, D., Mlisa, A. & Hartnady, C. Large scale quantification of aquifer storage and volumes from the Peninsula and Skurweberg Formations in the southwestern Cape. Water SA 36, 177–184 (2010).

    Google Scholar 

  • Holden, P. B., Rebelo, A. J. & New, M. G. Mapping invasive alien trees in water towers: a combined approach using satellite data fusion, drone technology and expert engagement. Remote Sens. Appl.: Soc. Environ. https://doi.org/10.1016/j.rsase.2020.100448 (2021).

  • Midgley, J. & Scott, D. The use of stable isotopes of water in hydrological studies in the Jonkershoek Valley. Water SA 20, 151–154 (1994).

    Google Scholar 

  • Van Genuchten, M. T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).

    Google Scholar 

  • Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P. Hydrologic and water quality models: performance measures and evaluation criteria. Trans. ASABE 58, 1763–1785 (2015).

    Google Scholar 

  • Stone, D. A. et al. A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim. Extremes 19, 10–19 (2018).

    Google Scholar 

  • Risser, M. D., Stone, D. A., Paciorek, C. J., Wehner, M. F. & Angélil, O. Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Clim. Dyn. 49, 3051–3073 (2017).

    Google Scholar 

  • Jones, G. S., Stott, P. A. & Christidis, N. Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos. 118, 4001–4024 (2013).

    Google Scholar 

  • Sun, L. et al. Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to factual and counterfactual forcing. Weather Clim. Extremes 19, 1–9 (2018).

    CAS 

    Google Scholar 

  • Guillod, B. P. et al. weather@home 2: validation of an improved global–regional climate modelling system. Geosci. Model Dev. 10, 1849–1872 (2017).

    Google Scholar 

  • Massey, N. et al. weather@home—development and validation of a very large ensemble modelling system for probabilistic event attribution. Q. J. R. Meteorol. Soc. 141, 1528–1545 (2014).

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  • Flato, G. et al. in Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 741–866 (Cambridge University Press, 2014).

  • Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agriculture 1, 96–99 (1985).

    Google Scholar 

  • Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M. & Hayhoe, K. Climate change scenarios for the California region. Clim. Change 87, 21–42 (2008).

    Google Scholar 

  • Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing. https://www.R-project.org/, 2020).

  • Paciorek, C. J., Stone, D. A. & Wehner, M. F. Quantifying statistical uncertainty in the attribution of human influence on severe weather. Weather Clim. Extremes 20, 69–80 (2018).

    Google Scholar 

  • Tadono, T. et al. Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B4, 157–162, https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2#description (2016).

    Google Scholar 

  • Takaku, J., Tadono, T., Tsutsui, K. & Ichikawa, M. Validation of “Aw3d” Global Dsm Generated from Alos Prism. ISPRS Ann. Photogramm. III-4, 25–31 (2016).

    Google Scholar 

  • Viviroli, D. Increasing dependence of lowland population on mountain water resources. Nat. Sustain. 3, 917–928 (2020).

    Google Scholar 

  • Meybeck, M. A New typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt. Res. Dev. 21, 34–45 (2001).

  • DWS. Surface water home. Department of Water and Sanitation. Republic of South Africa. https://www.dws.gov.za/Hydrology/Unverified/UnverifiedDataFlowInfo.aspx (2021).


  • Source: Ecology - nature.com

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Using nature’s structures in wooden buildings