United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2015). Accessed on 16 Dec 2021.
Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21(7), 2655–2660 (2015).
Google Scholar
Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 15 °C target. Nat. Clim. Change 9(1), 66–72 (2019).
Google Scholar
Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).
Google Scholar
Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).
Google Scholar
Tubiello, F. N. et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 16, 065007 (2021).
Google Scholar
Smith, P. et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) (Cambridge University Press, 2014).
Schlesinger, W. H. & Andrews, J. A. Soil respiration and the global carbon cycle. Biogeochemistry 78, 7–20 (2000).
Google Scholar
Smith, K. A. & Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage. 20, 245–253 (2004).
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Jones, S. K. et al. Nitrous oxide emissions from managed grassland: A comparison of eddy covariance and static chamber measurements. Atmos. Meas. Tech. 4, 2179–2194 (2011).
Google Scholar
Chapuis‐Lardy, L., Wrage, N., Metay, A., Chotte, J. L. & Bernoux, M. Soils, a sink for N2O? A review. Glob. Change Biol. 13, 1–17 (2007).
Google Scholar
Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466, 164–174 (2014).
Google Scholar
Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37(1), 1–17 (2017).
Google Scholar
Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).
Google Scholar
Guardia, G. et al. Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. J Clean. Prod. 241, 118307 (2019).
Google Scholar
Osipitan, O. A., Dille, J. A., Assefa, Y. & Knezevic, S. Z. Cover crop for early season weed suppression in crops: Systematic review and meta-analysis. Agron. J. 110(6), 2211–2221 (2018).
Google Scholar
Thapa, R., Mirsky, S. B. & Tully, K. L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. Qual. 47(6), 1400–1411 (2018).
Google Scholar
Snapp, S. S. et al. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 97, 322–332 (2005).
Google Scholar
Reicks, G. W. et al. Winter cereal rye cover crop decreased nitrous oxide emissions during early spring. Agron. J. 113, 3900–3909 (2021).
Google Scholar
Behnke, G. D. & Villamil, M. B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crops Res. 241, 107580 (2019).
Google Scholar
Blanco-Canqui, H., Holman, J. D., Schlegel, A. J., Tatarko, J. & Shaver, T. M. Replacing fallow with cover crops in a semi-arid soil: Effects on soil properties. Soil Sci. Soc. Am. J. 77, 1026–1034 (2013).
Google Scholar
Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).
Google Scholar
Smith, P. et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363, 789–813 (2008).
Google Scholar
Finney, D. M., White, C. M. & Kaye, J. P. Biomass production and carbon nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 108, 39–52 (2016).
Google Scholar
Drost, S. M., Rutgers, M., Wouterse, M., De Boer, W. & Bodelier, P. L. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 361, 114060 (2020).
Google Scholar
Thapa, V. R., Ghimire, R., Acosta-Martínez, V., Marsalis, M. A. & Schipanski, M. E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semi-arid cropping systems. Appl. Soil Ecol. 157, 103735 (2021).
Google Scholar
Muhammad, I. et al. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil Till. Res. 192, 103–112 (2019).
Google Scholar
Sarkodie-Addo, J., Lee, H. C. & Baggs, E. M. Nitrous oxide emissions after application of inorganic fertilizer and incorporation of green manure residues. Soil Use Manage. 19, 331–339 (2006).
Google Scholar
Guardia, G. et al. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences 13, 5245–5257 (2016).
Google Scholar
Mitchell, D. C., Castellano, M. J., Sawyer, J. E. & Pantoja, J. Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon. Soil Sci. Soc. Am. J. 77, 1765 (2013).
Google Scholar
Bodner, G., Mentler, A., Klik, A., Kaul, H. P. & Zechmeister-Boltenstern, S. Do cover crops enhance soil greenhouse gas losses during high emission moments under temperate Central Europe conditions? Die Bodenkult J. Land Manage. Food Environ. 68, 171–187 (2018).
Google Scholar
Álvaro-Fuentes, J., Easter, M. & Paustian, K. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87–94 (2012).
Google Scholar
Bronson, K. F. et al. Carbon and nitrogen pools of southern High Plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695–1704 (2004).
Google Scholar
Zhou, X., Talley, M. & Luo, Y. Biomass, litter and soil respiration along a precipitation gradient in Southern Great Plains, USA. Ecosystems 12, 1369–1380 (2009).
Google Scholar
Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).
Google Scholar
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
Google Scholar
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Google Scholar
Antosh, E., Idowu, J., Schutte, B. & Lehnhoff, E. Winter cover crops effects on soil properties and sweet corn yield in semi-arid irrigated systems. Agron. J. 112, 92–106 (2020).
Google Scholar
Paye, W. S. et al. Cover crop water use and corn silage production in semi-arid irrigated conditions. Agric. Water Manage. 260, 107275 (2022).
Google Scholar
Paye, W. S., Acharya, P. & Ghimire, R. Water productivity of forage sorghum in response to winter cover crops in semi-arid irrigated conditions. Field Crops Res. 283, 108552 (2022).
Google Scholar
Garba, I. I., Bell, L. W. & Williams, A. Cover crop legacy impacts on soil water and nitrogen dynamics, and on subsequent crop yields in drylands: A meta-analysis. Agron. Sustain. Dev. 42(3), 1–21 (2022).
Google Scholar
Gabriel, J. L., Muñoz-Carpena, R. & Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 155, 50–61 (2012).
Google Scholar
Trost, B. et al. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain Dev. 33, 733–749 (2013).
Google Scholar
Nilahyane, A., Ghimire, R., Thapa, V. R. & Sainju, U. M. Cover crop effects on soil carbon dioxide emissions in a semiarid cropping system. Agrosyst. Geosci. Environ. 3, e20012 (2020).
Thapa, V. R., Ghimire, R., Duval, B. D. & Marsalis, M. A. Conservation systems for positive net ecosystem carbon balance in semi-arid drylands. Agrosyst. Geosci. Environ. 2, 1–8 (2019).
Google Scholar
Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25(8), 2530–2543 (2019).
Google Scholar
Larionova, A. A., Sapronov, D. V., de Gerenyu, V. L., Kuznetsova, L. G. & Kudeyarov, V. N. Contribution of plant root respiration to the CO2 emission from soil. Eurasian Soil Sci. 39, 1127–1135 (2006).
Google Scholar
Hanson, P. J., Edwards, N. T., Garten, C. T. & Andrews, J. A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115–146 (2000).
Google Scholar
Rochette, P., Flanagan, L. B. & Gregorich, E. G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci. Soc. Am. J. 63, 1207–1213 (1999).
Google Scholar
Sainju, U. M., Jabro, J. D. & Stevens, W. B. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J. Environ. Qual. 37, 98–106 (2008).
Google Scholar
Mosier, A. R., Halvorson, A. D., Reule, C. A. & Liu, X. J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 35, 1584–1598 (2006).
Google Scholar
Fan, J. et al. Stover retention rather than no-till decreases the global warming potential of rainfed continuous maize cropland. Field Crops Res. 219, 14–23 (2018).
Google Scholar
USDA Soil Survey Staff. Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (2022). Accessed on 23 Jan 2022.
Zibilske, L. M. Carbon mineralization. In Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties (eds Weaver, R. W. et al.). https://doi.org/10.2136/sssabookser5.2.c38 (Soil Science Society of America Journal, 1994).
Google Scholar
Sainju, U. M. Net global warming potential, and greenhouse gas intensity. Soil Sci. Soc. Am. J. 84, 1393–1404 (2020).
Google Scholar
Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).
Google Scholar
Haile-Mariam, S., Collins, H. P. & Higgins, S. S. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)–potato (Solanum tuberosum L.) rotation. J. Environ. Qual. 37(3), 759–771 (2008).
Google Scholar
Source: Ecology - nature.com