in

Network traits predict ecological strategies in fungi

  • 1.

    Fischer MS, Glass NL. Communicate and fuse: How filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619.

  • 2.

    Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:335–67.

  • 3.

    Heaton LLM, Jones NS, Fricker MD. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun. 2020;11:2594.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Kiss E, Hegedus B, Viragh M, Varga T, Merenyi Z, Koszo T, et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun. 2019;10:4080.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biol Rev. 2020;34:151–69.

    Google Scholar 

  • 6.

    Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, et al. The fungi. Curr Biol. 2009;19:R840–845.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad Sci USA. 2014;111:740–5.

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167.

    Google Scholar 

  • 11.

    Dawson SK, Boddy L, Halbwachs H, Bässler C, Andrew C, Crowther TW, et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct Ecol. 2018;33:372–87.

    Google Scholar 

  • 12.

    Aguilar-Trigueros CA, Hempel S, Powell JR, Anderson IC, Antonovics J, Bergmann J, et al. Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biol Rev. 2015;29:34–41.

    Google Scholar 

  • 13.

    Pringle A, Taylor JW. The fitness of filamentous fungi. Trends Microbiol. 2002;10:474–81.

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol Rev. 2020;95:409–33.

    PubMed 

    Google Scholar 

  • 15.

    Boddy L. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13–32.

    Google Scholar 

  • 16.

    Boddy L, Donnelly DP. Fractal geometry and microorganisms in the environment. Biophys Chem Fractal Struct Processes Environ Syst. 2008;11:239–72.

  • 17.

    Lehmann A, Zheng W, Soutschek K, Roy J, Yurkov AM, Rillig MC. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Sci Rep. 2019;9:14152.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and dikaryons of the arbuscular mycorrhizal fungus rhizophagus irregularis differ in life history strategy. Front Plant Sci. 2021;12:1544.

    Google Scholar 

  • 19.

    Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.

    PubMed 

    Google Scholar 

  • 20.

    Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 2021;15:1782–1793.

  • 21.

    De Ligne L, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Van Acker J, De Baets B. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions. IMA Fungus. 2019;10:7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Dikec J, Olivier A, Bobee C, D’Angelo Y, Catellier R, David P, et al. Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina. Sci Rep. 2020;10:3131.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Du H, Lv P, Ayouz M, Besserer A, Perré P. Morphological characterization and quantification of the mycelial growth of the Brown-Rot fungus Postia placenta for modeling purposes. PLoS One. 2016;11:e0162469.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Lopez-Molina C, De Windt I, De Baets B. Automated image-based analysis of spatio-temporal fungal dynamics. Fungal Genet Biol. 2015;84:12–25.

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Boddy L, Wood J, Redman E, Hynes J, Fricker MD. Fungal network responses to grazing. Fungal Genet Biol. 2010;47:522–30.

    PubMed 

    Google Scholar 

  • 26.

    Rotheray TD, Jones TH, Fricker MD, Boddy L. Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecol. 2008;1:124–32.

    Google Scholar 

  • 27.

    Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD. Biological solutions to transport network design. Proc Biol Sci/R Soc. 2007;274:2307–15.

    Google Scholar 

  • 28.

    Fricker MD, Akita D, Heaton LLM, Jones N, Obara B, Nakagaki T. Automated analysis of Physarumnetwork structure and dynamics. J Phys D: Appl Phys. 2017;50:254005.

    Google Scholar 

  • 29.

    Lee SH, Fricker MD, Porter MA. Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits. J Complex Netw. 2017;5:145–59.

    Google Scholar 

  • 30.

    Obara B, Grau V, Fricker MD. A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics. 2012;28:2374–81.

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Bebber DP, Tlalka M, Hynes J, Darrah PR, Ashford A, Watkinson SC et al. Fungi and the environment. Cambridge: Cambridge University Press; 2007. p. 1−21.

  • 32.

    Fricker MD, Lee JA, Bebber DP, Tlalka M, Hynes J, Darrah PR, et al. Imaging complex nutrient dynamics in mycelial networks. J. Microsc. 2008;231:317–31.

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Vidal-Diez de Ulzurrun G, Huang T-Y, Chang C-W, Lin H-C, Hsueh Y-P. Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Comp Biol. 2019;15:e1007428.

    CAS 

    Google Scholar 

  • 34.

    Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Growth-induced mass flows in fungal networks. Proc R Soc B: Biol Sci. 2010;277:3265–74.

    Google Scholar 

  • 35.

    Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E. 2012;86:021905.

    Google Scholar 

  • 36.

    Fricker MD, Boddy L, Nakagaki T, Bebber DP (2009). Adaptive biological networks. In: Gross T, Sayama H, editors. Adaptive networks: theory, models, and applications. Berlin: Springer; 2009. p. 51−70.

  • 37.

    Boddy L, Jones TH. Mycelial responses in heterogeneous environments: parallels with macroorganisms. Fungi Environ. 2007;25:112–58.

    Google Scholar 

  • 38.

    Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Crowther TW, Jones TH, Boddy L. Interactions between saprotrophic basidiomycete mycelia and mycophagous soil fauna. Mycology. 2012;3:77–86.

    Google Scholar 

  • 40.

    Tordoff GM, Boddy L, Jones TH. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina, and Resinicium bicolor. Mycol Res. 2006;110:335–45.

    PubMed 

    Google Scholar 

  • 41.

    Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, et al. Analysis of fungal networks. Fungal Biol Rev. 2012;26:12–29.

    Google Scholar 

  • 42.

    Barthelemy M. Morphogenesis of spatial networks. Cham, Switzerland: Springer International Publishing; 2018.

  • 43.

    Fricker MD, Bebber D, Boddy L. Chapter 1 Mycelial networks: structure and dynamics. In: Boddy L, Frankland JC, van West P, editors. British mycological society symposia series. London, UK, Academic Press; 2008. p. 3−18.

  • 44.

    Fricker M, Boddy L, Bebber D. Biology of the fungal cell. Berlin Heidelberg: Springer Verlag; 2007. p. 309−30.

  • 45.

    Fricker MD, Lee JA, Boddy L, Bebber DP. The Interplay between structure and function in fungal networks. Topologica 2008;1:004.

  • 46.

    Moore D, Robson GD, Trinci AP. 21st century guidebook to fungi. Cambridge, UK: Cambridge University Press; 2011.

  • 47.

    Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Movement Ecol. 2019;7:36.

    Google Scholar 

  • 48.

    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.

    CAS 

    Google Scholar 

  • 49.

    Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods. 2015;12:233–5.

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336:1157–60.

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Andrade-Linares DR, Veresoglou SD, Rillig MC. Temperature priming and memory in soil filamentous fungi. Fungal Ecol. 2016;21:10–15.

    Google Scholar 

  • 52.

    A’Bear AD, Boddy L, Hefin Jones T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biol. 2012;18:1823–32.

    Google Scholar 

  • 53.

    Boddy L, Wells JM, Culshaw C, Donnelly DP. Fractal analysis in studies of mycelium in soil. Geoderma. 1999;88:301–28.

    Google Scholar 

  • 54.

    Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun. 2019;10:984.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol. 2021;229:631–48.

    PubMed 

    Google Scholar 

  • 56.

    Wickham H, Bryan J. Read Excel Files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.

  • 57.

    Csardi G, Nepusz T. The igraph software package for complex network research. InterJ, Complex Syst. 2006;1695:1–9.

    Google Scholar 

  • 58.

    R Development Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing; 2017.

  • 59.

    Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community ecology package. 2012. https://CRAN.R-project.org/package=vegan.

  • 60.

    A’Bear AD, Jones TH, Boddy L. Size matters: What have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem. 2014;78:274–83.

    Google Scholar 

  • 61.

    Trinci APJ. A kinetic study of the growth of Aspergillus nidulans and other fungi. Microbiology. 1969;57:11–24.

    CAS 

    Google Scholar 

  • 62.

    Morin-Sardin S, Nodet P, Coton E, Jany J-L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev. 2017;31:12–32.

    Google Scholar 

  • 63.

    Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704.

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy, and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94:2101–37.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Domsch K, Gams W, Anderson T-H. Compendium of soil fungi. 2nd ed. Eching: IHW-Verlag; 2007.

  • 66.

    Thomma BP. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol. 2003;4:225–36.

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Bacon C, Yates I. Endophytic root colonization by fusarium species: histology, plant interactions, and toxicity. In: Schulz BE, Boyle CC, Sieber T, editors. Microbial root endophytes. Berlin: Springer; 2006. p. 133−52.

  • 68.

    Nguyen TA, Le S, Lee M, Fan J-S, Yang D, Yan J, et al. Fungal wound healing through instantaneous protoplasmic gelation. Curr Biol. 2021;31:271–82. e275

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Scheu S, Simmerling F. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin, and mixed diets. Oecologia. 2004;139:347–53.

    PubMed 

    Google Scholar 

  • 70.

    Rayner ADM, Boddy L. Fungal decomposition of wood. Its biology and ecology. Chichester, Sussex: John Wiley & Sons Ltd.; 1988.

  • 71.

    Connolly JH, Shortle WC, Jellison J. Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Botany. 1999;77:179–87.

    CAS 

    Google Scholar 

  • 72.

    A’Bear AD, Jones TH, Boddy L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014;10:34–43.

    Google Scholar 

  • 73.

    Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.

    PubMed 

    Google Scholar 

  • 74.

    Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579.


  • Source: Ecology - nature.com

    Meet the 2021-22 Accenture Fellows

    Reducing food waste to increase access to affordable foods