Oliveira, R. F. Social plasticity in fish: Integrating mechanisms and function. J. Fish Biol. 81, 2127–2150 (2012).
Google Scholar
Oliveira, R. F. Mind the fish: Zebrafish as a model in cognitive social neuroscience. Front. Neural Circuits 7, 1–15 (2013).
Hofmann, H. A. et al. An evolutionary framework for studying mechanisms of social behavior. Trends Ecol. Evol. 29, 581–589 (2014).
Google Scholar
Maruska, K., Soares, M., Lima-Maximino, M., de Siqueira-Silva, D. H. & Maximino, C. Social plasticity in the fish brain: Neuroscientific and ethological aspects. Brain Res. 1711, 156–172 (2019).
Google Scholar
O’Connell, L. A. & Hofmann, H. A. The Vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. J. Comp. Neurol. 519, 3599–3639 (2011).
Google Scholar
Teles, M. C., Almeida, O., Lopes, J. S. & Oliveira, R. F. Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish. Proc. R. Soc. B Biol. Sci. 282, 20151099 (2015).
Rittschof, C. C. et al. Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee. Proc. Natl. Acad. Sci. U.S.A. 111, 17929–17934 (2014).
Google Scholar
Kasper, C., Colombo, M., Aubin-horth, N. & Taborsky, B. Physiology & behavior brain activation patterns following a cooperation opportunity in a highly social cichlid fish. Physiol. Behav. 195, 37–47 (2018).
Google Scholar
Filby, A. L., Paull, G. C., Bartlett, E. J., Van Look, K. J. W. & Tyler, C. R. Physiological and health consequences of social status in zebrafish (Danio rerio). Physiol. Behav. 101, 576–587 (2010).
Google Scholar
Munchrath, L. A. & Hofmann, H. A. Distribution of sex steroid hormone receptors in the brain of an African cichlid fish, Astatotilapia burtoni. J. Comp. Neurol. 518, 3302–3326 (2010).
Google Scholar
Robinson, G. E., Fernald, R. D. & Clayton, D. F. Genes and social behavior. Science 322, 896–900 (2008).
Google Scholar
Barron, A. B. & Robinson, G. E. The utility of behavioral models and modules in molecular analyses of social behavior. Genes Brain Behav. 7, 257–265 (2008).
Google Scholar
Qiu, Y.-Q. KEGG pathway database. In Encyclopedia of Systems Biology (ed. Dubitzky, W.) 1068–1069 (Springer, 2013).
Bloch, G. & Grozinger, C. M. Social molecular pathways and the evolution of bee societies. Philos. Trans. R. Soc. B Biol. Sci. 366, 2155–2170 (2011).
Waldie, P. A., Blomberg, S. P., Cheney, K. L., Goldizen, A. W. & Grutter, A. S. Long-term effects of the cleaner fish Labroides dimidiatus on coral reef fish communities. PLoS ONE 6, e21201 (2011).
Google Scholar
Grutter, A. S. Cleaner fish really do clean. Nature. 398, 672–673. https://doi.org/10.1038/19443 (1999).
Google Scholar
Soares, M., Oliveira, R. F., Ros, A. F. H., Grutter, A. S. & Bshary, R. Tactile stimulation lowers stress in fish. Nat. Commun. 2, 534–535 (2011).
Google Scholar
Soares, M., Gerlai, R. & Maximino, C. The integration of sociality, monoamines and stress neuroendocrinology in fish models: Applications in the neurosciences. J. Fish Biol. 93, 170–191 (2018).
Google Scholar
Grutter, A. Parasite removal rates by the cleaner wrasse Labroides dimidiatus. Mar. Ecol. Prog. Ser. 130, 61–70 (1996).
Grutter, A. S. Effect of the removal of cleaner fish on the abundance and species composition of reef fish. Oecologia 111, 137–143 (1997).
Google Scholar
Tebbich, S., Bshary, R. & Grutter, A. Cleaner fish Labroides dimidiatus recognise familiar clients. Anim. Cogn. 5, 139–145 (2002).
Google Scholar
Pinto, A., Oates, J., Grutter, A. & Bshary, R. Cleaner wrasses Labroides dimidiatus are more cooperative in the presence of an audience. Curr. Biol. 21, 1140–1144 (2011).
Google Scholar
Soares, M. The neurobiology of mutualistic behavior: The cleanerfish swims into the spotlight. Front. Behav. Neurosci. 11, 1–12 (2017).
Soares, M. C., Bshary, R., Mendonça, R., Grutter, A. S. & Oliveira, R. F. Arginine vasotocin regulation of interspecific cooperative behaviour in a cleaner fish. PLoS ONE 7, 39583 (2012).
Paula, J. R., Messias, J., Grutter, A., Bshary, R. & Soares, M. The role of serotonin in the modulation of cooperative behavior. Behav. Ecol. 26, 1005–1012 (2015).
Schunter, C., Jarrold, M. D., Munday, P. L. & Ravasi, T. Diel CO2 fluctuations alter the molecular response of coral reef fishes to ocean acidification conditions. Mol. Ecol. 30, 5150–5118 (2021).
Soares, M. C., Santos, T. P. & Messias, J. P. M. Dopamine disruption increases cleanerfish cooperative investment in novel client partners. R. Soc. Open Sci. 4, 1–7 (2017).
Paula, J. R. et al. Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification. Sci. Rep. 9, 1–10 (2019).
Cardoso, S. C. et al. Arginine vasotocin modulates associative learning in a mutualistic cleaner fish. Behav. Ecol. Sociobiol. 69, 1173–1181 (2015).
Cardoso, S. C. et al. Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish. Physiol. Behav. 145, 1–7 (2015).
Google Scholar
O’Connell, L. A., Fontenot, M. R. & Hofmann, H. A. Characterization of the dopaminergic system in the brain of an African cichlid fish, Astatotilapia burtoni. J. Comp. Neurol. 519, 75–92 (2011).
Google Scholar
Vernier, P. The Brains of Teleost Fishes. Evolution of Nervous Systems 2nd edn, 1–4 (Elsevier, 2016).
Weitekamp, C. A. & Hofmann, H. A. Neuromolecular correlates of cooperation and conflict during territory defense in a cichlid fish. Horm. Behav. 89, 145–156 (2017).
Google Scholar
Messias, J., Santos, T. P., Pinto, M. & Soares, M. C. Stimulation of dopamine D1 receptor improves learning capacity in cooperating cleaner fish. Proc. R. Soc. B Biol. Sci. 283, 20152272 (2016).
Bshary, R. & Grutter, A. S. Punishment and partner switching cause cooperative behaviour in a cleaning mutualism. Biol. Lett. 1, 396–399 (2005).
Google Scholar
Bajaffer, A., Mineta, K. & Gojobori, T. Evolution of memory system-related genes. FEBS Open Bio 11, 3201–3210 (2021).
Google Scholar
Soares, M., Cardoso, S. C., Grutter, A. S., Oliveira, R. F. & Bshary, R. Cortisol mediates cleaner wrasse switch from cooperation to cheating and tactical deception. Horm. Behav. 66, 346–350 (2014).
Google Scholar
de Abreu, M. S., Messias, J., Thörnqvist, P. O., Winberg, S. & Soares, M. C. The variable monoaminergic outcomes of cleaner fish brains when facing different social and mutualistic contexts. PeerJ 2018, 1–17 (2018).
Terry, W. S. Classical conditioning. In Learning and Memory (ed. Terry, W. S.) 76–112 (Psychology Press, 2021).
Dunn, A. R. et al. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 114, E2253–E2262 (2017).
Google Scholar
Studzinski, A. L. M., Barros, D. M. & Marins, L. F. Growth hormone (GH) increases cognition and expression of ionotropic glutamate receptors (AMPA and NMDA) in transgenic zebrafish (Danio rerio). Behav. Brain Res. 294, 36–42 (2015).
Google Scholar
von Trotha, J. W., Vernier, P. & Bally-Cuif, L. Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. Eur. J. Neurosci. 40, 3302–3315 (2014).
Hoppmann, V., Wu, J. J., Søviknes, A. M., Helvik, J. V. & Becker, T. S. Expression of the eight AMPA receptor subunit genes in the developing central nervous system and sensory organs of zebrafish. Dev. Dyn. 237, 788–799 (2008).
Google Scholar
Weld, M. M., Kar, S., Maler, L. & Quirion, R. The distribution of excitatory amino acid binding sites in the brain of an electric fish, Apteronotus leptorhynchus. J. Chem. Neuroanat. 4, 39–61 (1991).
Zoicas, I. & Kornhuber, J. The role of metabotropic glutamate receptors in social behavior in Rodents. Int. J. Mol. Sci. 20, 1412 (2019).
Google Scholar
Borroni, A. M., Fichtenholtz, H., Woodside, B. L. & Teyler, T. J. Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory. J. Neurosci. 20, 9272–9276 (2000).
Google Scholar
Oliveira, R. F. Social plasticity in fish: Integrating mechanisms. J. Fish Biol. 81, 2127–2150 (2012).
Google Scholar
O’Connell, L. A., Ding, J. H. & Hofmann, H. A. Sex differences and similarities in the neuroendocrine regulation of social behavior in an African cichlid fish. Horm. Behav. 64, 468–476 (2013).
Google Scholar
Soares, M., Bshary, R., Cardoso, S. C. & Côté, I. M. The meaning of jolts by fish clients of cleaning gobies. Ethology 114, 209–214 (2008).
Grutter, A. S. & Bshary, R. Cleaner wrasse prefer client mucus: Support for partner control mechanisms in cleaning interactions. Proc. R. Soc. B Biol. Sci. 270, S242–S244. https://doi.org/10.1098/rsbl.2003.0077 (2003).
Google Scholar
Soares, M. et al. Hormonal mechanisms of cooperative behaviour. Philos. Trans. R. Soc. B Biol. Sci. 365, 2737–2750 (2010).
Alberini, C. M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145 (2009).
Google Scholar
Dou, Y. et al. Memory function in feeding habit transformation of mandarin fish (Siniperca chuatsi). Int. J. Mol. Sci. 19, 1254 (2018).
Google Scholar
Blanton, M. L. & Specker, J. L. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol. 37, 97–115 (2007).
Google Scholar
Kawauchi, H., Sower, S. A. & Moriyama, S. Chapter 5. The neuroendocrine regulation of prolactin and somatolactin secretion in fish. In Fish Physiology Vol. 28 (eds Kawauchi, H. et al.) 197–234 (Elsevier Inc., 2009).
Helmreich, D. L., Parfitt, D. B., Lu, X. Y., Akil, H. & Watson, S. J. Relation between the hypothalamic-pituitary-thyroid (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis during repeated stress. Neuroendocrinology 81, 183–192 (2005).
Google Scholar
Jönsson, E. & Björnsson, B. Physiological functions of growth hormone in fish with special reference to its influence on behaviour. Fish. Sci. 68, 742–748 (2002).
Zoeller, R. T., Tan, S. W. & Tyl, R. W. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit. Rev. Toxicol. 37, 11–53 (2007).
Google Scholar
Björnsson, B. et al. Growth hormone endocrinology of salmonids: Regulatory mechanisms and mode of action. Fish Physiol. Biochem. 27, 227–242 (2002).
Trainor, B. C. & Hofmann, H. A. Somatostatin regulates aggressive behavior in an African cichlid fish. Endocrinology 147, 5119–5125 (2006).
Google Scholar
Doyon, C., Gilmour, K. M., Trudeau, V. L. & Moon, T. W. Corticotropin-releasing factor and neuropeptide Y mRNA levels are elevated in the preoptic area of socially subordinate rainbow trout. Gen. Comp. Endocrinol. 133, 260–271 (2003).
Google Scholar
du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).
Triki, Z. & Bshary, R. Sex differences in the cognitive abilities of a sex-changing fish species Labroides dimidiatus. R. Soc. Open Sci. 8, 210239 (2021).
Google Scholar
Grutter, A. S. Cleaner fish use tactile dancing behavior as a preconflict management strategy. Curr. Biol. 14, 1080–1083 (2004).
Google Scholar
Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).
Andrews, S. Babraham Bioinformatics—FastQC: A Quality Control Tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Google Scholar
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
Google Scholar
Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Source: Ecology - nature.com