in

Neuron numbers link innovativeness with both absolute and relative brain size in birds

  • Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21582–21586 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jerison, H. J. Animal intelligence as encephalization. Phil. Trans. R. Soc. Lond. B 308, 21–35 (1985).

    CAS 
    Article 

    Google Scholar 

  • Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Lefebvre, L., Whitle, P., Lascaris, E. & Finkelstein, A. Feeding innovations and forebrain size in birds. Anim. Behav. 53, 549–560 (1997).

    Article 

    Google Scholar 

  • Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009).

    Article 

    Google Scholar 

  • Reader, S. M., Hager, Y. & Laland, K. N. The evolution of primate general and cultural intelligence. Phil. Trans. R. Soc. B 366, 1017–1027 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad. Sci. USA 113, 2532–2537 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).

    PubMed 
    Article 

    Google Scholar 

  • van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: evidence from Strepsirrhine primates. Am. Nat. 176, 758–767 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Herculano-Houzel, S. Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann. NY Acad. Sci. 1225, 191–199 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Logan, C. J. et al. Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. Comp. Cogn. Behav. Rev. 13, 55–89 (2018).

    Article 

    Google Scholar 

  • Jerison, H. Evolution of the Brain and Intelligence (Academic Press, 1973).

  • Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 16, 1–7 (2017).

    Article 

    Google Scholar 

  • Van Schaik, C. P., Triki, Z., Bshary, R. & Heldstab, S. A. A farewell to the encephalization quotient: a new brain size measure for comparative primate cognition. Brain Behav. Evol. 96, 1–12 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Striedter, G. F. Principles of Brain Evolution (Sinauer Associates, 2005).

    Google Scholar 

  • MacLean, E. L. et al. The evolution of self-control. Proc. Natl Acad. Sci. USA 111, E2140–E2148 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Matějů, J. et al. Absolute, not relative brain size correlates with sociality in ground squirrels. Proc. R. Soc. B 283, 20152725 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Deaner, R. O., Isler, K., Burkart, J. & Van Schaik, C. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Smaers, J. B., Dechmann, D. K. N., Goswami, A., Soligo, C. & Safi, K. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc. Natl Acad. Sci. USA 109, 18006–18011 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, eabe2101 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Němec, P. & Osten, P. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Curr. Opin. Neurobiol. 60, 176–183 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kverková, K. et al. The evolution of brain neuron numbers in amniotes. Proc. Natl Acad. Sci. USA 119, e2121624119 (2022).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Iwaniuk, A. N. & Hurd, P. L. The evolution of cerebrotypes in birds. Brain Behav. Evol. 65, 215–230 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Timmermans, S., Lefebvre, L., Boire, D. & Basu, P. Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain Behav. Evol. 56, 196–203 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sayol, F., Lefebvre, L. & Sol, D. Relative brain size and its relation with the associative pallium in birds. Brain Behav. Evol. 87, 69–77 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).

  • Deaner, R. O., Barton, R. A. & van Schaik, C. P. in Primate Life Histories and Socioecology (eds Kappeler, P. M. & Pereira, M. E.) 233–265 (Univ. of Chicago Press, 2003).

  • Sol, D., Sayol, F., Ducatez, S. & Lefebvre, L. The life-history basis of behavioural innovations. Phil. Trans. R. Soc. B 371, 20150187 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dukas, R. Evolutionary biology of animal cognition. Ann. Rev. Ecol. Evol. Syst. 35, 347–374 (2004).

    Article 

    Google Scholar 

  • Ricklefs, R. E. The cognitive face of life histories. Wilson Bull. 116, 119–133 (2004).

    Article 

    Google Scholar 

  • Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P. & Ton, R. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am. Nat. 186, 223–236 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Unzeta, M., Martin, T. E. & Sol, D. Daily nest predation rates decrease with body size in passerine birds. Am. Nat. 196, 743–754 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Charvet, C. J. & Striedter, G. F. Developmental modes and developmental mechanisms can channel brain evolution. Front. Neuroanat. 5, 4 (2011).

  • Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herculano-Houzel, S. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Massen, J. J. M. et al. Brain size and neuron numbers drive differences in yawn duration across mammals and birds. Commun. Biol. 4, 1–10 (2021).

    Article 

    Google Scholar 

  • Ramsey, G., Bastian, M. L. & Schaik, C. Van Animal innovation defined and operationalized. Behav. Brain Sci. 30, 393–437 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Lefebvre, L. A global database of feeding innovations in birds. Wilson J. Ornithol. 132, 803–809 (2021).

    Article 

    Google Scholar 

  • Barton, R. A. Embodied cognitive evolution and the cerebellum. Phil. Trans. R. Soc. B 367, 2097–2107 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic–midbrain–cerebellar circuit. Sci. Rep. 8, 9960 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brieuc, M. S. O. O., Waters, C. D., Drinan, D. P. & Naish, K. A. A practical introduction to random forest for genetic association studies in ecology and evolution. Mol. Ecol. Res. 18, 755–766 (2018).

    Article 

    Google Scholar 

  • Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Güntürkün, O., Ströckens, F., Scarf, D. & Colombo, M. Apes, feathered apes, and pigeons: differences and similarities. Curr. Opin. Behav. Sci. 16, 35–40 (2017).

    Article 

    Google Scholar 

  • Ströckens, F. et al. High associative neuron numbers could drive cognitive performance in corvid species. J. Comp. Neurol. 530, 1588–1605 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M. & Güntürkün, O. Large-scale network organisation in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89 (2013).

  • Emery, N. J. Cognitive ornithology: the evolution of avian intelligence. Phil. Trans. R. Soc. B 361, 23–43 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. P. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).

    Article 

    Google Scholar 

  • Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herculano-Houzel, S., Manger, P. R. & Kaas, J. H. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8, 77 (2014).

  • Smaers, J. B., Mongle, C. S., Safi, K. & Dechmann, D. K. N. Allometry, evolution and development of neocortex size in mammals. Prog. Brain Res. 250, 83–107 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Cárdenas, A. & Borrell, V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol. Life Sci. 77, 435–1460 (2020).

    Article 
    CAS 

    Google Scholar 

  • García-Moreno, F. & Molnár, Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog. Neurobiol. 194, 101865 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Charvet, C. J. & Striedter, G. F. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis. Proc. R. Soc. B 276, 3421–3427 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Striedter, G. F. & Charvet, C. J. Developmental origins of species differences in telencephalon and tectum size: morphometric comparisons between a parakeet (Melopsittacus undulatus) and a quail (Colinus virgianus). J. Comp. Neurol. 507, 1663–1675 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Uomini, N., Fairlie, J., Gray, R. D. & Griesser, M. Extended parenting and the evolution of cognition. Phil. Trans. R. Soc. Lond. B 375, 20190495 (2020).

    Article 

    Google Scholar 

  • Reiner, A. et al. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377–414 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Ducatez, S. & Lefebvre, L. Patterns of research effort in birds. PLoS ONE 9, e89955 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

  • Cooney, C. R. et al. Ecology and allometry predict the evolution of avian developmental durations. Nat. Commun. 11, 2383 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Botelho, J. F. & Faunes, M. The evolution of developmental modes in the new avian phylogenetic tree. Evol. Dev. 17, 221–223 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Bürkner, P.-C. Brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berk, R. A. Statistical Learning from a Regression Perspective (Springer International, 2017).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • Lleonart, J., Salat, J. & Torres, G. J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205, 85–93 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021).


  • Source: Ecology - nature.com

    Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis

    Pursuing progress at the nanoscale