in

Niche expansion and adaptive divergence in the global radiation of crows and ravens

  • Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Nicolai, M. P. J. & Matzke, N. J. Trait-based range expansion aided in the global radiation of Crocodylidae. Glob. Ecol. Biogeogr. 28, 1244–1258 (2019).

    Article 

    Google Scholar 

  • Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

  • Price, T. & others. Speciation in Birds (Roberts and Co., 2008).

  • Moyle, R. G., Filardi, C. E., Smith, C. E. & Diamond, J. Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proc. Natl Acad. Sci. USA 106, 1863–1868 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van Bocxlaer, I. et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Phillimore, A. B. & Price, T. D. in Speciation and Patterns on Diversity (eds Butlin, R., Bridle, J. & Schluter, D.) Ch. 13 (Cambridge Univ. Press, 2009).

  • Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).

  • Naciri, Y. & Linder, H. P. The genetics of evolutionary radiations. Biol. Rev. Camb. Philos. Soc. 95, 1055–1072 (2020).

  • Price, T. D. & Sol, D. Introduction: genetics of colonizing species. Am. Nat. 172, S1–S3 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  • Gill, F. & Donsker, D. IOC world bird list (v 8.1). 2018. (2018).

  • Del Hoyo, J., Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World Vol. 1 (Lynx edicions, 1992).

  • Cassey, P. Are there body size implications for the success of globally introduced land birds? Ecography 24, 413–420 (2001).

    Article 

    Google Scholar 

  • Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sol, D. Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett. 5, 130–133 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Lefebvre, L. & Sol, D. Brains, lifestyles and cognition: are there general trends? Brain. Behav. Evol. 72, 135–144 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marki, P. Z. et al. Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes). Evolution 69, 1874–1924 (2015).

    PubMed 
    Article 

    Google Scholar 

  • KessLer, J. E. Evolution of Corvids and their presence in the neogene and the quaternary in the Carpathian Basin. Ornis Hungarica 28, 121–168 (2020).

    Article 

    Google Scholar 

  • Olson, S. L. & Rasmussen, P. C., others. Miocene and Pliocene birds from the Lee Creek Mine, North Carolina. Smithson Contrib. Paleobiol. 90, 233–365 (2001).

    Google Scholar 

  • Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

  • Alfaro, M. E. et al. Lineage-specific diversification rates and high turnover in the history of jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rabosky, D. L., Donnellan, S. C., Grundler, M. & Lovette, I. J. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst. Biol. 63, 610–627 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S. & Bairlein, F. Functional morphology and integration of corvid skulls-a 3D geometric morphometric approach. Front. Zool. 6, 2 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeffer, A., Johansson, L. C. & Marmebro, Å. Functional correlation between habitat use and leg morphology in birds (Aves). Biol. J. Linn. Soc. 79, 461–484 (2003).

    Article 

    Google Scholar 

  • Wang, X., McGowan, A. J. & Dyke, G. J. Avian wing proportions and flight styles: first step towards predicting the flight modes of Mesozoic birds. PLoS ONE 6, e28672 (2011).

  • Corbin, C. E., Lowenberger, L. K. & Gray, B. L. Linkage and trade-off in trophic morphology and behavioural performance of birds. Funct. Ecol. 29, 808–815 (2015).

    Article 

    Google Scholar 

  • Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B Biol. Sci. 283, 20161922 (2016).

    Article 

    Google Scholar 

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution 6, 1311–1319 (2015).

  • Uyeda, J. C., Caetano, D. S. & Pennell, M. W. Comparative analysis of principal components can be misleading. Syst. Biol. 64, 677–689 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leyequién, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741 (2007).

    Article 

    Google Scholar 

  • Grant, P. R. Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Biol. 17, 319–333 (1968).

    CAS 
    Article 

    Google Scholar 

  • Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).

    Article 

    Google Scholar 

  • Friedman, N. R. et al. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc. R. Soc. B 286, 20192474 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Friedman, N. R., Harmáčková, L., Economo, E. P. & Remeš, V. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds. Evolution 71, 2120–2129 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rabosky, D. L. et al. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Article 

    Google Scholar 

  • Thomas, G. H. & Freckleton, R. P. MOTMOT: models of trait macroevolution on trees. Methods Ecol. Evol. 3, 145–151 (2012).

    CAS 
    Article 

    Google Scholar 

  • O’Meara, B. C., Ané, C., Sanderson, M. J. & Wainwright, P. C. Testing for different rates of continuous trait evolution using likelihood. Evolution 60, 922–933 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Slater, G. J., Price, S. A., Santini, F. & Alfaro, M. E. Diversity versus disparity and the radiation of modern cetaceans. Proc. R. Soc. B Biol. Sci. 277, 3097–3104 (2010).

    Article 

    Google Scholar 

  • Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).

    Article 

    Google Scholar 

  • Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Article 

    Google Scholar 

  • Heinrich, B. Ravens in Winter (Simon and Schuster, 2014).

  • Taylor, A. H., Hunt, G. R., Medina, F. S. & Gray, R. D. Do new Caledonian crows solve physical problems through causal reasoning? Proc. R. Soc. B Biol. Sci. 276, 247–254 (2009).

    CAS 
    Article 

    Google Scholar 

  • Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain. Behav. Evol. 63, 233–246 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Rensch, B. Increase of learning capability with increase of brain-size. Am. Nat. 90, 81–95 (1956).

    Article 

    Google Scholar 

  • Roth, T. C., LaDage, L. D., Freas, C. A. & Pravosudov, V. V. Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proc. R. Soc. B Biol. Sci. 279, 402–410 (2012).

    Article 

    Google Scholar 

  • Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sayol, F., Lefebvre, L. & Sol, D. Relative brain size and its relation with the associative pallium in birds. Brain. Behav. Evol. 87, 69–77 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Garcia-Porta, J. & Ord, T. J. Key innovations and island colonization as engines of evolutionary diversification: a comparative test with the Australasian diplodactyloid geckos. J. Evol. Biol. 26, 2662–2680 (2013).

  • Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Jenkins, D. G. et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16, 415–425 (2007).

    Article 

    Google Scholar 

  • Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).

  • Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).

    Article 

    Google Scholar 

  • Baltensperger, A. P. et al. Seasonal observations and machine-learning-based spatial model predictions for the common raven (Corvus corax) in the urban, sub-arctic environment of Fairbanks, Alaska. Polar Biol. 36, 1587–1599 (2013).

    Article 

    Google Scholar 

  • Kövér, L. et al. Recent colonization and nest site selection of the Hooded Crow (Corvus corone cornix L.) in an urban environment. Landsc. Urban Plan. 133, 78–86 (2015).

    Article 

    Google Scholar 

  • Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1–11 (2018).

    CAS 
    Article 

    Google Scholar 

  • Dukas, R. & Ratcliffe, J. M. Cognitive Ecology II (University of Chicago Press, 2009).

  • Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).

  • Aboitiz, F. Behavior, body types and the irreversibility of evolution. Acta Biotheor. 38, 91–101 (1990).

  • Wcislo, W. T. Behavioral environments and evolutionary change. Annu. Rev. Ecol. Syst. 20, 137–169 (1989).

    Article 

    Google Scholar 

  • Sol, D., Stirling, D. G. & Lefebvre, L. Behavioral drive or behavioral inhibition in evolution: subspecific diversification in Holarctic passerines. Evolution 59, 2669–2677 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Mayr, E., Mayr, E., Mayr, E. & Mayr, E. Animal Species and Evolution Vol. 797 (Belknap Press of Harvard University Press, 1963).

  • Mayr, E. The emergence of evolutionary novelties. Evol. Darwin 1, 349–380 (1960).

    Google Scholar 

  • Hardy, A. C. The Living Stream: Evolution and Man (Harper & Row, 1967).

  • Wyles, J. S., Kunkel, J. G. & Wilson, A. C. Birds, behavior, and anatomical evolution. Proc. Natl Acad. Sci. USA 80, 4394–4397 (1983).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Plotkin, H. C. The Role of Behavior in Evolution (MIT press, 1988).

  • Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).

    Article 

    Google Scholar 

  • Sol, D. & Price, T. D. Brain size and the diversification of body size in birds. Am. Nat. 172, 170–177 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Sayol, F., Lapiedra, O., Ducatez, S. & Sol, D. Larger brains spur species diversification in birds. Evolution 73, 2085–2093 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

  • Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R., others. Evolutionary rates and HBV: issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Rambaut, A. & Drummond, A. J. Tracer v1. 4. (2007).

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Louca, S. & Louca, M. S. Package ‘castor’. (2017).

  • Rasband, W. S. et al. ImageJ. (1997).

  • Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).

    Google Scholar 

  • Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article 

    Google Scholar 

  • Adams, D. C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. Geomorph: software for geometric morphometric analyses. (2016).

  • Chira, A. M. & Thomas, G. H. The impact of rate heterogeneity on inference of phylogenetic models of trait evolution. J. Evol. Biol. 29, 2502–2518 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rodríguez Casal, A. & Pateiro López, B. Generalizing the convex hull of a sample: the R package alphahull. J. Stat. Softw. 34, 1–28 (2010).

  • Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2012).

  • Clavel, J. & Morlon, H. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in Phyllostomid bats. Syst. Biol. 69, 927–943 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dujardin, J.-P., Le Pont, F. & Baylac, M. Geographical versus interspecific differentiation of sand flies (Diptera: Psychodidae): a landmark data analysis. Bull. Entomol. Res. 93, 87–90 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • International, B. BirdLife International and handbook of the birds of the world (2017) Bird species distribution maps of the world. (2017).

  • Callaghan, C. T., Nakagawa, S. & Cornwell, W. K. Global abundance estimates for 9,700 bird species. Proc. Natl. Acad. Sci. USA 118, e2023170118 (2021).

  • Hijmans, R. & van Etten, J. raster: raster: geographic data analysis and modeling. R. Packag. version 517, 2 (2014).

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Dray, S. & Dufour, A.-B., others. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article 

    Google Scholar 

  • Ho, L. S. T. et al. Package ‘phylolm’. (2018).

  • Akaike, H. Selected Papers of Hirotugu Akaike (Springer, 1998).

  • Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award

    Strengthening students’ knowledge and experience in climate and sustainability