in

Ninety years of coastal monitoring reveals baseline and extreme ocean temperatures are increasing off the Finnish coast

  • IPCC, 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Bindoff, N. L. et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. IPCC Spec. Rep. Ocean Cryosph. a Chang. Clim. [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Press 447–588 (2019).

  • Cheng, L. et al. Upper Ocean Temperatures Hit Record High in 2020. Adv. Atmos. Sci. 38, 523–530 (2021).

    Article 

    Google Scholar 

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

    Article 

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 

    Google Scholar 

  • Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Chang. Biol. 15, 1090–1103 (2009).

    Article 

    Google Scholar 

  • Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 2015–2018 (2018).

    Article 

    Google Scholar 

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. https://doi.org/10.1038/s41467-018-03732-9 (2018).

    Article 

    Google Scholar 

  • Garcia-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A review of the european summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).

    Article 

    Google Scholar 

  • Marbà, N., Jordà, G., Agustí, S., Girard, C. & Duarte, C. M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2, 56 (2015).

  • Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-0068-4 (2020). in press.

    Article 

    Google Scholar 

  • Oliver, E. C. J., Wernberg, T., Benthuysen, J., Chen, K. & Eds. Advances in Understanding Marine Heatwaves and Their Impacts. Lausanne: Frontiers Media SA. vol. 7 (2020).

  • Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387, 27–37 (2009).

    Article 

    Google Scholar 

  • Schlegel, R. W., Oliver, E. C. J., Wernberg, T. & Smit, A. J. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr. 151, 189–205 (2017).

    Article 

    Google Scholar 

  • Rutgersson, A., Jaagus, J., Schenk, F. & Stendel, M. Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years. Clim Res. 61, 177–190 (2014).

  • Liblik, T. & Lips, U. Stratification has strengthened in the baltic sea – an analysis of 35 years of observational data. Front. Earth Sci. 7, 1–15 (2019).

    Article 

    Google Scholar 

  • Reusch, T. B. H. et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4, eaar8195 (2018).

  • Hu, S. et al. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean. Environ. Res. Lett. 16, 104024 (2021).

  • Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface Evolution and Persistence of Marine Heatwaves in the Northeast Pacific. Geophys. Res. Lett. 47, 1–10 (2020).

    Article 

    Google Scholar 

  • Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).

    Article 

    Google Scholar 

  • WMO, Guide to Climatological Practices. (2018).

  • Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).

    Article 

    Google Scholar 

  • Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. U. S. A. 116, 1126–1131 (2019).

    CAS 
    Article 

    Google Scholar 

  • Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 1, 5473–5496 (2007).

  • Veneranta, L., Vanhatalo, J. & Urho, L. Detailed temperature mapping–Warming characterizes archipelago zones. Estuar. Coast. Shelf Sci. 182, 123–135 (2016).

    Article 

    Google Scholar 

  • Merkouriadi, I. & Leppäranta, M. Long-term analysis of hydrography and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea. Clim. Change 124, 849–859 (2014).

    CAS 
    Article 

    Google Scholar 

  • Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    CAS 
    Article 

    Google Scholar 

  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article 

    Google Scholar 

  • Rey, J., Rohat, G., Perroud, M., Goyette, S. & Kasparian, J. Shifting velocity of temperature extremes under climate change. Environ. Res. Lett. 15, 034027 (2020).

  • Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).

    Article 

    Google Scholar 

  • Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 1–9 (2021) https://doi.org/10.1038/s41467-021-21263-8.

  • Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kniebusch, M., Meier, H. E. M., Neumann, T. & Börgel, F. Temperature variability of the baltic sea since 1850 and attribution to atmospheric forcing variables. J. Geophys. Res. Ocean. 124, 4168–4187 (2019).

    Article 

    Google Scholar 

  • Merkouriadi, I. & Leppäranta, M. Influence of sea ice on the seasonal variability of hydrography and heat content in Tvärminne, Gulf of Finland. Ann. Glaciol. 56, 274–284 (2015).

    Article 

    Google Scholar 

  • Haapala, J. Upwelling and its influence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland. Estuarine, Coastal and Shelf Science 38, 507–521 (1994).

    CAS 
    Article 

    Google Scholar 

  • Sorte, C. J. B., Fuller, A. & Bracken, M. E. S. Impacts of a simulated heat wave on composition of a marine community. Oikos 119, 1909–1918 (2010).

    Article 

    Google Scholar 

  • Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Chang. Biol. 24, 4357–4367 (2018).

    Article 

    Google Scholar 

  • Morón Lugo, S. C. et al. Warming and temperature variability determine the performance of two invertebrate predators. Sci. Rep. 10, 1–14 (2020).

    Article 

    Google Scholar 

  • Humborg, C. et al. High emissions of carbon dioxide and methane from the coastal Baltic Sea at the end of a summer heat wave. Front. Mar. Sci. 6, 1–14 (2019).

    Article 

    Google Scholar 

  • Laakso, L. et al. 100 Years of atmospheric and marine observations at the Finnish Utö Island in the Baltic Sea. Ocean Sci. 14, 617–632 (2018).

    Article 

    Google Scholar 

  • Høyer, J. L. & Karagali, I. Sea surface temperature climate data record for the North Sea and Baltic Sea. J. Clim. 29, 2529–2541 (2016).

    Article 

    Google Scholar 

  • Schlegel, R. W. & Smit, A. J. heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).

    Article 

    Google Scholar 

  • Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting Marine Heatwaves With Sub-Optimal Data. Front. Mar. Sci. 6, 1–14 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean

    Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate