Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 104, 13268–13272 (2007).
Google Scholar
Evans, D. L., Quinton, J. N., Davies, J. A. C., Zhao, J. & Govers, G. Soil lifespans and how they can be extended by land use and management change. Environ. Res. Lett. 15, 1. https://doi.org/10.1088/1748-9326/aba2fd (2020).
Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009 (2016).
Google Scholar
Gao, Y. et al. Effects of tillage methods on soil carbon and wind erosion. Land Degrad. Dev. 27, 583–591. https://doi.org/10.1002/ldr.2404 (2016).
Google Scholar
Klik, A. & Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Till. Res. 203, 1. https://doi.org/10.1016/j.still.2020.104669 (2020).
Seitz, S. et al. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 39, 1. https://doi.org/10.1007/s13593-018-0545-z (2018).
Lal, R., Reicosky, D. C. & Hanson, J. D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 93, 1–12. https://doi.org/10.1016/j.still.2006.11.004 (2007).
Google Scholar
Mal, P., Schmitz, M. & Hesse, J. W. Economic and environmental effects of conservation tillage with glyphosate use: A case study of Germany. Outlooks Pest Manag. 26, 24–27. https://doi.org/10.1564/v26_feb_07 (2015).
Google Scholar
Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei. Bodenbearbeitung, Bewässerung, Landschaftselemente. Erhebung über landwirtschaftliche Produktionsmethoden (ELPM). 2010. (2011).
Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314. https://doi.org/10.1038/ngeo838 (2010).
Google Scholar
Öttl, L. K. et al. Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 32, 3077–3091. https://doi.org/10.1002/ldr.3968 (2021).
Google Scholar
Wilken, F., Ketterer, M., Koszinski, S., Sommer, M. & Fiener, P. Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling. SOIL 6, 549–564. https://doi.org/10.5194/soil-6-549-2020 (2020).
Google Scholar
Van Oost, K., Govers, G., De Alba, S. & Quine, T. A. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 30, 443–466. https://doi.org/10.1191/0309133306pp487ra (2006).
Google Scholar
Winnige, B. Ergebnisse zur Bodenverlagerung durch Bearbeitungserosion in der Jungmoränenlandschaft Nordostdeutschlands—Investigations of soil movement by tillage as a type of soil erosion in the young moraine soil landscape of Northeast Germany. Arch. Agron. Soil Sci. 50, 319–327. https://doi.org/10.1080/03650340410001663864 (2004).
Google Scholar
Fiener, P., Wilken, F. & Auerswald, K. Filling the gap between plot and landscape scale—eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany. Adv. Geosci. 48, 31–48. https://doi.org/10.5194/adgeo-48-31-2019 (2019).
Google Scholar
Fiener, P. et al. Uncertainties in assessing tillage erosion—How appropriate are our measuring techniques?. Geomorphology 304, 214–225. https://doi.org/10.1016/j.geomorph.2017.12.031 (2018).
Google Scholar
Kimaro, D. N., Deckers, J. A., Poesen, J., Kilasara, M. & Msanya, B. M. Short and medium term assessment of tillage erosion in the Uluguru Mountains Tanzania. Soil Till. Res. 81, 97–108. https://doi.org/10.1016/j.still.2004.05.006 (2005).
Google Scholar
Sadowski, H. & Sorge, B. Der Normalhöhenpunkt von 1912 – Datumspunkt des DHHN 2012? Vermessung Brandenburg (2005).
Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario Canada. Soil Till. Res. 51, 1. https://doi.org/10.1016/S0167-1987(99)00037-9 (1999).
Google Scholar
Zhang, J. H. & Li, F. C. An appraisal of two tracer methods for estimating tillage erosion rates under hoeing tillage. Proc. Environ. Sci. 11, 1227–1233. https://doi.org/10.1016/j.proenv.2011.12.184 (2011).
Google Scholar
Turkelboom, F. et al. Assessment of tillage erosion rates on steep slopes in northern Thailand. CATENA 29, 29–44 (1997).
Google Scholar
Van Muysen, W., Govers, G., Van Oost, K. & Van Rompaey, A. The effect of tillage depth, tillage speed, and soil condition on chisel tillage erosivity. J. Soil Water Conserv. 55, 355–364 (2000).
Quine, T. A., Desmet, P. J. J., Govers, G., Vandaele, K. & Walling, D. E. A comparison of the roles of tillage and water erosion in landform development and sediment export on agricultural land near Leuven, Belgium. IAHS Publ. 224, 77–86 (1994).
Google Scholar
Heckrath, G. et al. Tillage erosion and its effect on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312–324. https://doi.org/10.2134/jeq2005.0312a (2005).
Google Scholar
Carter, M. R. Conservation tillage. Encyclop. Soils Environ. 1, 306–311. https://doi.org/10.1016/B0-12-348530-4/00270-8 (2005).
Google Scholar
Govers, G., Vandaele, K., Desmet, P., Poesen, J. & Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 45, 469–478. https://doi.org/10.1111/j.1365-2389.1994.tb00532.x (1994).
Google Scholar
Marques da Silva, J. R. & Alexandre, C. Soil carbonation processes as evidence of tillage-induced erosion. Soil Till. Res. 78, 217–224. https://doi.org/10.1016/j.still.2004.02.008 (2004).
Mech, S. J. & Free, G. R. Movement of soil during tillage operations. Agric. Eng. 1, 379–382 (1942).
Tiessen, K. H. D., Mehuys, G. R., Lobb, D. A. & Rees, H. W. Tillage erosion within potato production systems in Atlantic Canada: I. Measurement of tillage translocation by implements used in seedbed preparation. Soil Till. Res. 95, 308–319. https://doi.org/10.1016/j.still.2007.02.003 (2007).
Google Scholar
Marques da Silva, J. R., Soares, J. M. C. N. & Karlen, D. L. Implement and soil condition effects on tillage-induced erosion. Soil Till. Res. 78, 207–216. https://doi.org/10.1016/j.still.2004.02.009 (2004).
Google Scholar
Kietzer, B. Aufklärung der Bodenverlagerung durch Bearbeitungserosion in Jungmoränenlandschaften—Elucidation of soil displacement by tillage erosion in young moraine landscapes PhD thesis, Technical University of Berlin, (2007).
Lüthgens, C., Böse, M. & Preusser, F. Age of the Pomeranian ice-marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598–615. https://doi.org/10.1111/j.1502-3885.2011.00211.x (2011).
Google Scholar
Deumlich, D., Schmidt, R. & Sommer, M. A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. J. Plant Nutr. Soil Sci. 173, 843–851. https://doi.org/10.1002/jpln.200900094 (2010).
Google Scholar
Koszinski, S., Gerke, H. H., Hierold, W. & Sommer, M. Geophysical-based modeling of a kettle hole catchment of the morainic soil landscape. Vadose Zone J. 12, 1. https://doi.org/10.2136/vzj2013.02.0044 (2013).
Google Scholar
Sommer, M., Gerke, H. H. & Deumlich, D. Modelling soil landscape genesis: A “time split” approach for hummocky agricultural landscapes. Geoderma 145, 480–493. https://doi.org/10.1016/j.geoderma.2008.01.012 (2008).
Google Scholar
DWD Climate Data Center (CDC). Historical hourly station observations of 2m air temperature and humidity for Germany, version v006. (2018).
DWD Climate Data Center (CDC). Historical hourly station observations of precipitation for Germany, version v21.3. (2021).
Zhang, H. et al. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 7, 807–827. https://doi.org/10.5194/esurf-7-807-2019 (2019).
Google Scholar
Lindstrom, M. J., Nelson, W. W., Schumacher, T. E. & Lemme, G. D. Soil movement by tillage as affected by slope. Soil Till. Res. 17, 255–264. https://doi.org/10.1016/0167-1987(90)90040-K (1990).
Google Scholar
Crawley, M. J. The R book. 2nd edn, (Wiley, 2013).
Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).
Google Scholar
R Core Team. A language and environment for statistical computing. (2021).
De Alba, S. Modelling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough. J. Soil Water Conserv. 1, 335–345 (2001).
Gerontidis, D. V. S. et al. The effect of moldboard plow on tillage erosion along a hillslope. J. Soil Water Conserv. 56, 147–152 (2001).
Heckrath, G., Halekoh, U., Djurhuus, J. & Govers, G. The effect of tillage direction on soil redistribution by mouldboard ploughing on complex slopes. Soil Tillage Res. 88, 225–241. https://doi.org/10.1016/j.still.2005.06.001 (2006).
Google Scholar
Kosmas, C. et al. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Till Res. 58, 31–44. https://doi.org/10.1016/S0167-1987(00)00175-6 (2001).
Google Scholar
Lindstrom, M. J., Nelson, W. W. & Schumacher, T. E. Quantifying tillage erosion rates due to moldboard plowing. Soil Till Res. 24, 243–255. https://doi.org/10.1016/0167-1987(92)90090-X (1992).
Google Scholar
Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can. J. Soil Sci. 75, 211–218. https://doi.org/10.4141/cjss95-029 (1995).
Google Scholar
Quine, T. A. & Zhang, Y. Re-defining tillage erosion: Quantifying intensity–direction relationships for complex terrain: 1. Derivation of an adirectional soil transport coefficient. Soil Use Manag. 20, 114–123. https://doi.org/10.1111/j.1475-2743.2004.tb00346.x (2004).
Google Scholar
Quine, T. A., Basher, L. R. & Nicholas, A. P. Tillage erosion intensity in the South Canterbury Downlands, New Zealand. Aust. J. Soil Res. 41, 789–807. https://doi.org/10.1071/SR02063 (2003).
Google Scholar
Revel, J. C. & Guiresse, M. Erosion due to cultivation of calcareous clay soils on the hillsides of south west France: I. Effect of former farming practices. Soil Till Res. 35, 147–155. https://doi.org/10.1016/0167-1987(95)00482-3 (1995).
Google Scholar
Van Muysen, W. & Govers, G. Soil displacement and tillage erosion during secondary tillage operations: The case of rotary harrow and seeding equipment. Soil Till Res. 65, 185–191. https://doi.org/10.1016/S0167-1987(01)00284-7 (2002).
Google Scholar
Van Muysen, W., Govers, G., Bergkamp, G., Roxo, M. & Poesen, J. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil Till Res. 51, 303–316. https://doi.org/10.1016/S0167-1987(99)00044-6 (1999).
Google Scholar
Poesen, J. et al. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197. https://doi.org/10.1016/S0169-555X(96)00025-6 (1997).
Google Scholar
Quine, T. A. et al. Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: An investigation using caesium-134. Soil Till Res. 51, 279–301. https://doi.org/10.1016/S0167-1987(99)00043-4 (1999).
Google Scholar
Kemper, W. D. & Rosenau, R. C. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 1, 1001–1006. https://doi.org/10.2136/sssaj1984.03615995004800050009x (1984).
Google Scholar
Reinermann, S., Gessner, U., Asam, S., Kuenzer, C. & Dech, S. The effect of droughts on vegetation condition in Germany: An analysis based on two decades of satellite earth observation time series and crop yield statistics. Rem. Sens. 11, 1. https://doi.org/10.3390/rs11151783 (2019).
Google Scholar
Lüttger, A. B. & Feike, T. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theor. Appl. Climatol. 1, 15–29. https://doi.org/10.1007/s00704-017-2076-y (2018).
Google Scholar
Madarász, B. et al. Conservation tillage vs. conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe. Hungary. Int. J. Agric. Sustain. 14, 408–427. https://doi.org/10.1080/14735903.2016.1150022 (2016).
Google Scholar
Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041 (2016).
Google Scholar
Napoli, M., Altobelli, F. & Orlandini, S. Effect of land set up systems on soil losses. Ital. J. Agron. 15, 306–314. https://doi.org/10.4081/ija.2020.1768 (2020).
Google Scholar
Dumanski, J., Peiretti, R., Benites, J. R., McGarry, D. & Pieri, C. The paradigm of conservation agriculture. In Proceedings of World Association of Soil and Water Conservation, 58–64 (2006).
Source: Ecology - nature.com