in

Non-inversion conservation tillage as an underestimated driver of tillage erosion

  • Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 104, 13268–13272 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, D. L., Quinton, J. N., Davies, J. A. C., Zhao, J. & Govers, G. Soil lifespans and how they can be extended by land use and management change. Environ. Res. Lett. 15, 1. https://doi.org/10.1088/1748-9326/aba2fd (2020).

  • Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gao, Y. et al. Effects of tillage methods on soil carbon and wind erosion. Land Degrad. Dev. 27, 583–591. https://doi.org/10.1002/ldr.2404 (2016).

    Article 

    Google Scholar 

  • Klik, A. & Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Till. Res. 203, 1. https://doi.org/10.1016/j.still.2020.104669 (2020).

  • Seitz, S. et al. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 39, 1. https://doi.org/10.1007/s13593-018-0545-z (2018).

  • Lal, R., Reicosky, D. C. & Hanson, J. D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 93, 1–12. https://doi.org/10.1016/j.still.2006.11.004 (2007).

    Article 

    Google Scholar 

  • Mal, P., Schmitz, M. & Hesse, J. W. Economic and environmental effects of conservation tillage with glyphosate use: A case study of Germany. Outlooks Pest Manag. 26, 24–27. https://doi.org/10.1564/v26_feb_07 (2015).

    Article 

    Google Scholar 

  • Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei. Bodenbearbeitung, Bewässerung, Landschaftselemente. Erhebung über landwirtschaftliche Produktionsmethoden (ELPM). 2010. (2011).

  • Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314. https://doi.org/10.1038/ngeo838 (2010).

    Article 
    CAS 

    Google Scholar 

  • Öttl, L. K. et al. Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 32, 3077–3091. https://doi.org/10.1002/ldr.3968 (2021).

    Article 

    Google Scholar 

  • Wilken, F., Ketterer, M., Koszinski, S., Sommer, M. & Fiener, P. Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling. SOIL 6, 549–564. https://doi.org/10.5194/soil-6-549-2020 (2020).

    Article 
    CAS 

    Google Scholar 

  • Van Oost, K., Govers, G., De Alba, S. & Quine, T. A. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 30, 443–466. https://doi.org/10.1191/0309133306pp487ra (2006).

    Article 

    Google Scholar 

  • Winnige, B. Ergebnisse zur Bodenverlagerung durch Bearbeitungserosion in der Jungmoränenlandschaft Nordostdeutschlands—Investigations of soil movement by tillage as a type of soil erosion in the young moraine soil landscape of Northeast Germany. Arch. Agron. Soil Sci. 50, 319–327. https://doi.org/10.1080/03650340410001663864 (2004).

    Article 

    Google Scholar 

  • Fiener, P., Wilken, F. & Auerswald, K. Filling the gap between plot and landscape scale—eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany. Adv. Geosci. 48, 31–48. https://doi.org/10.5194/adgeo-48-31-2019 (2019).

    Article 

    Google Scholar 

  • Fiener, P. et al. Uncertainties in assessing tillage erosion—How appropriate are our measuring techniques?. Geomorphology 304, 214–225. https://doi.org/10.1016/j.geomorph.2017.12.031 (2018).

    Article 

    Google Scholar 

  • Kimaro, D. N., Deckers, J. A., Poesen, J., Kilasara, M. & Msanya, B. M. Short and medium term assessment of tillage erosion in the Uluguru Mountains Tanzania. Soil Till. Res. 81, 97–108. https://doi.org/10.1016/j.still.2004.05.006 (2005).

    Article 

    Google Scholar 

  • Sadowski, H. & Sorge, B. Der Normalhöhenpunkt von 1912 – Datumspunkt des DHHN 2012? Vermessung Brandenburg (2005).

  • Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario Canada. Soil Till. Res. 51, 1. https://doi.org/10.1016/S0167-1987(99)00037-9 (1999).

    Article 

    Google Scholar 

  • Zhang, J. H. & Li, F. C. An appraisal of two tracer methods for estimating tillage erosion rates under hoeing tillage. Proc. Environ. Sci. 11, 1227–1233. https://doi.org/10.1016/j.proenv.2011.12.184 (2011).

    Article 

    Google Scholar 

  • Turkelboom, F. et al. Assessment of tillage erosion rates on steep slopes in northern Thailand. CATENA 29, 29–44 (1997).

    Article 
    CAS 

    Google Scholar 

  • Van Muysen, W., Govers, G., Van Oost, K. & Van Rompaey, A. The effect of tillage depth, tillage speed, and soil condition on chisel tillage erosivity. J. Soil Water Conserv. 55, 355–364 (2000).

    Google Scholar 

  • Quine, T. A., Desmet, P. J. J., Govers, G., Vandaele, K. & Walling, D. E. A comparison of the roles of tillage and water erosion in landform development and sediment export on agricultural land near Leuven, Belgium. IAHS Publ. 224, 77–86 (1994).

    CAS 

    Google Scholar 

  • Heckrath, G. et al. Tillage erosion and its effect on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312–324. https://doi.org/10.2134/jeq2005.0312a (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carter, M. R. Conservation tillage. Encyclop. Soils Environ. 1, 306–311. https://doi.org/10.1016/B0-12-348530-4/00270-8 (2005).

    Article 

    Google Scholar 

  • Govers, G., Vandaele, K., Desmet, P., Poesen, J. & Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 45, 469–478. https://doi.org/10.1111/j.1365-2389.1994.tb00532.x (1994).

    Article 

    Google Scholar 

  • Marques da Silva, J. R. & Alexandre, C. Soil carbonation processes as evidence of tillage-induced erosion. Soil Till. Res. 78, 217–224. https://doi.org/10.1016/j.still.2004.02.008 (2004).

  • Mech, S. J. & Free, G. R. Movement of soil during tillage operations. Agric. Eng. 1, 379–382 (1942).

    Google Scholar 

  • Tiessen, K. H. D., Mehuys, G. R., Lobb, D. A. & Rees, H. W. Tillage erosion within potato production systems in Atlantic Canada: I. Measurement of tillage translocation by implements used in seedbed preparation. Soil Till. Res. 95, 308–319. https://doi.org/10.1016/j.still.2007.02.003 (2007).

    Article 

    Google Scholar 

  • Marques da Silva, J. R., Soares, J. M. C. N. & Karlen, D. L. Implement and soil condition effects on tillage-induced erosion. Soil Till. Res. 78, 207–216. https://doi.org/10.1016/j.still.2004.02.009 (2004).

    Article 

    Google Scholar 

  • Kietzer, B. Aufklärung der Bodenverlagerung durch Bearbeitungserosion in Jungmoränenlandschaften—Elucidation of soil displacement by tillage erosion in young moraine landscapes PhD thesis, Technical University of Berlin, (2007).

  • Lüthgens, C., Böse, M. & Preusser, F. Age of the Pomeranian ice-marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598–615. https://doi.org/10.1111/j.1502-3885.2011.00211.x (2011).

    Article 

    Google Scholar 

  • Deumlich, D., Schmidt, R. & Sommer, M. A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. J. Plant Nutr. Soil Sci. 173, 843–851. https://doi.org/10.1002/jpln.200900094 (2010).

    Article 
    CAS 

    Google Scholar 

  • Koszinski, S., Gerke, H. H., Hierold, W. & Sommer, M. Geophysical-based modeling of a kettle hole catchment of the morainic soil landscape. Vadose Zone J. 12, 1. https://doi.org/10.2136/vzj2013.02.0044 (2013).

    Article 

    Google Scholar 

  • Sommer, M., Gerke, H. H. & Deumlich, D. Modelling soil landscape genesis: A “time split” approach for hummocky agricultural landscapes. Geoderma 145, 480–493. https://doi.org/10.1016/j.geoderma.2008.01.012 (2008).

    Article 
    CAS 

    Google Scholar 

  • DWD Climate Data Center (CDC). Historical hourly station observations of 2m air temperature and humidity for Germany, version v006. (2018).

  • DWD Climate Data Center (CDC). Historical hourly station observations of precipitation for Germany, version v21.3. (2021).

  • Zhang, H. et al. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 7, 807–827. https://doi.org/10.5194/esurf-7-807-2019 (2019).

    Article 

    Google Scholar 

  • Lindstrom, M. J., Nelson, W. W., Schumacher, T. E. & Lemme, G. D. Soil movement by tillage as affected by slope. Soil Till. Res. 17, 255–264. https://doi.org/10.1016/0167-1987(90)90040-K (1990).

    Article 

    Google Scholar 

  • Crawley, M. J. The R book. 2nd edn, (Wiley, 2013).

  • Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).

    Book 
    MATH 

    Google Scholar 

  • R Core Team. A language and environment for statistical computing. (2021).

  • De Alba, S. Modelling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough. J. Soil Water Conserv. 1, 335–345 (2001).

    Google Scholar 

  • Gerontidis, D. V. S. et al. The effect of moldboard plow on tillage erosion along a hillslope. J. Soil Water Conserv. 56, 147–152 (2001).

    Google Scholar 

  • Heckrath, G., Halekoh, U., Djurhuus, J. & Govers, G. The effect of tillage direction on soil redistribution by mouldboard ploughing on complex slopes. Soil Tillage Res. 88, 225–241. https://doi.org/10.1016/j.still.2005.06.001 (2006).

    Article 

    Google Scholar 

  • Kosmas, C. et al. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Till Res. 58, 31–44. https://doi.org/10.1016/S0167-1987(00)00175-6 (2001).

    Article 

    Google Scholar 

  • Lindstrom, M. J., Nelson, W. W. & Schumacher, T. E. Quantifying tillage erosion rates due to moldboard plowing. Soil Till Res. 24, 243–255. https://doi.org/10.1016/0167-1987(92)90090-X (1992).

    Article 

    Google Scholar 

  • Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can. J. Soil Sci. 75, 211–218. https://doi.org/10.4141/cjss95-029 (1995).

    Article 

    Google Scholar 

  • Quine, T. A. & Zhang, Y. Re-defining tillage erosion: Quantifying intensity–direction relationships for complex terrain: 1. Derivation of an adirectional soil transport coefficient. Soil Use Manag. 20, 114–123. https://doi.org/10.1111/j.1475-2743.2004.tb00346.x (2004).

    Article 

    Google Scholar 

  • Quine, T. A., Basher, L. R. & Nicholas, A. P. Tillage erosion intensity in the South Canterbury Downlands, New Zealand. Aust. J. Soil Res. 41, 789–807. https://doi.org/10.1071/SR02063 (2003).

    Article 

    Google Scholar 

  • Revel, J. C. & Guiresse, M. Erosion due to cultivation of calcareous clay soils on the hillsides of south west France: I. Effect of former farming practices. Soil Till Res. 35, 147–155. https://doi.org/10.1016/0167-1987(95)00482-3 (1995).

    Article 

    Google Scholar 

  • Van Muysen, W. & Govers, G. Soil displacement and tillage erosion during secondary tillage operations: The case of rotary harrow and seeding equipment. Soil Till Res. 65, 185–191. https://doi.org/10.1016/S0167-1987(01)00284-7 (2002).

    Article 

    Google Scholar 

  • Van Muysen, W., Govers, G., Bergkamp, G., Roxo, M. & Poesen, J. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil Till Res. 51, 303–316. https://doi.org/10.1016/S0167-1987(99)00044-6 (1999).

    Article 

    Google Scholar 

  • Poesen, J. et al. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197. https://doi.org/10.1016/S0169-555X(96)00025-6 (1997).

    Article 

    Google Scholar 

  • Quine, T. A. et al. Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: An investigation using caesium-134. Soil Till Res. 51, 279–301. https://doi.org/10.1016/S0167-1987(99)00043-4 (1999).

    Article 
    MathSciNet 

    Google Scholar 

  • Kemper, W. D. & Rosenau, R. C. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 1, 1001–1006. https://doi.org/10.2136/sssaj1984.03615995004800050009x (1984).

    Article 

    Google Scholar 

  • Reinermann, S., Gessner, U., Asam, S., Kuenzer, C. & Dech, S. The effect of droughts on vegetation condition in Germany: An analysis based on two decades of satellite earth observation time series and crop yield statistics. Rem. Sens. 11, 1. https://doi.org/10.3390/rs11151783 (2019).

    Article 

    Google Scholar 

  • Lüttger, A. B. & Feike, T. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theor. Appl. Climatol. 1, 15–29. https://doi.org/10.1007/s00704-017-2076-y (2018).

    Article 

    Google Scholar 

  • Madarász, B. et al. Conservation tillage vs. conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe. Hungary. Int. J. Agric. Sustain. 14, 408–427. https://doi.org/10.1080/14735903.2016.1150022 (2016).

    Article 

    Google Scholar 

  • Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041 (2016).

    Article 

    Google Scholar 

  • Napoli, M., Altobelli, F. & Orlandini, S. Effect of land set up systems on soil losses. Ital. J. Agron. 15, 306–314. https://doi.org/10.4081/ija.2020.1768 (2020).

    Article 

    Google Scholar 

  • Dumanski, J., Peiretti, R., Benites, J. R., McGarry, D. & Pieri, C. The paradigm of conservation agriculture. In Proceedings of World Association of Soil and Water Conservation, 58–64 (2006).


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures