in

Non-linear relationships between density and demographic traits in three Aedes species

  • Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).

    MATH 

    Google Scholar 

  • Fussman, G. F. & Heber, G. Food web complexity and chaotic population dynamics. Ecol. Lett. 5, 394–401 (1978).

    Article 

    Google Scholar 

  • Maron, J. L. & Crone, E. Herbivory: effects on plant abundance, distribution, and population growth. Proc. R. Soc. B. 272, 2575–2584 (1978).

    Google Scholar 

  • Johst, K., Berryman, A. & Lima, M. From individual interactions to population dynamics: Individual resource partitioning simulation exposes the causes of nonlinear intra-specific competition. Pop. Ecol. 50, 79–90 (2008).

    Article 

    Google Scholar 

  • McIntire, K. M. & Juliano, S. A. How can mortality increase population size? A test of two hypotheses. Ecology 99, 1660–1670 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Mylius, S. D. & Deikmann, O. On evolutionary stable life histories, optimization and the need to be specific about density dependence. Oikos 74, 218–224 (1995).

    Article 

    Google Scholar 

  • Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 44, 498–501 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis North America. Evolution 69, 1678–1689 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lafferty, K. D. & Holt, R. D. How should environmental stress affect the population dynamics of disease?. Ecol. Lett. 6, 654–664 (2003).

    Article 

    Google Scholar 

  • Sibley, R. M., Barker, D., Denham, M. C., Hone, J. & Pagel, M. On the regulation of populations of mammals, birds, fish, and insects. Science 309, 607–610 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Bjorndal, K., Bolten, A. B. & Chaloupka, M. Y. Green turtle somatic growth model: evidence for density-dependence. Ecol. App. 10, 269–282 (2000).

    Google Scholar 

  • Lamb, J. S., Satgé, Y. G. & Jodice, P. G. R. Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird. Ecol. Evol. 7, 6469–6481 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kobayashi, K. Sexual selection sustains biodiversity via producing negative density-dependent population growth. J. Ecol. 107, 1433–1438 (2018).

    Article 

    Google Scholar 

  • López-Sepulcre, A. & Kokko, H. Territorial defense, territory size, and population regulation. Am. Nat. 166, 317–325 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Density-dependent dispersal strategies in a cooperative breeder. Ecology 99, 1932–1941 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Bonenfant, C. et al. Empirical evidence of density- dependence in populations of large herbivores. Adv. Ecol. Res. 41, 313–357 (2009).

    Article 

    Google Scholar 

  • Legros, M., Lloyd, A. L., Huang, Y. & Gould, F. Density-dependent intraspecific competition in the larval stage of Aedes aegypt (Diptera: Culicidae): Revisiting the current paradigm. J. Med. Entomol. 46, 409–419 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Hixon, M. A. & Jones, G. P. Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 86, 2847–2859 (2006).

    Article 

    Google Scholar 

  • Vonesh, J. R. & De La Cruz, O. Complex life cycles and density dependence: Assessing the contribution of egg mortality to amphibian declines. Oecologia 133, 325–333 (2002).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Southwood, T. R., Murdie, G., Yasuno, M., Tonn, R. J. & Reader, P. M. Studies on the life budget of Ae. aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 46, 211–226 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dye, C. Intraspecific competition amongst larval Aedes aegypti: food exploitation or chemical interference. Ecol. Entomol. 7, 39–46 (1982).

    Article 

    Google Scholar 

  • Dye, C. Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Anim. Ecol. 53, 247–268 (1984).

    Article 

    Google Scholar 

  • Livdahl, T. P. & Willey, M. S. Prospects for an invasion: competition between Aedes albopictus and native Aedes triseriatus. Science 253, 189–191 (1991).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alto, B. W., Lounibos, L. P., Higgs, S. & Juliano, S. A. Larval competition differentially affects arbovirus infection in Aedes mosquito. Ecology 86, 3279–3288 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Juliano, S. A. Population dynamics. J. Am. Mosq. Control Assoc. 23, 265–275 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Focks, D. A., Haile, D. G., Daniels, E. & Mount, G. A. Dynamics life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation. J. Med. Entomol. 30, 1018–1028 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ellis, A. M., Garcia, A. J., Focks, D. A., Morrison, A. C. & Scott, T. W. Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control. Am. J. Trop. Med. Hyg. 85, 257–264 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gilpin, M. E. & McClelland, G. A. H. Systems analysis of the yellow fever mosquito Aedes aegypti. Fortschr. Zool. 25, 355–388 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • Juliano, S. A. Species introduction and replacement among mosquitoes: Interspecific resource competition or apparent competition?. Ecology 79, 255–268 (1998).

    Article 

    Google Scholar 

  • Lord, C. C. Density dependence in larval Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 35, 825–829 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).

    Article 

    Google Scholar 

  • Walsh, R. K., Facchinelli, L., Ramsey, J. M., Bond, J. G. & Gould, F. Assessing the impact of density dependence in field populations of Aedes aegypti. J. Vect. Ecol. 36, 300–307 (2011).

    CAS 
    Article 

    Google Scholar 

  • Walsh, R. K., Bradley, C., Apperson, C. S. & Gould, F. An experimental field study of delayed density dependence in natural populations of Aedes albopictus. PLoS ONE 7, e35959 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Walsh, R. K. et al. Regulation of Aedes aegypti population dynamics in field systems: Quantifying direct and delayed density dependence. Am. J. Trop. Med. Hyg. 89, 68–77 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Livdahl, T. P. & Sugihara, G. Non-linear interactions of populations and the importance of estimating per capita rates of change. J. Anim. Ecol. 53, 573–580 (1984).

    Article 

    Google Scholar 

  • Getz, W. M. A hypothesis regarding the abruptness of density dependence and the growth rate of populations. Ecology 77, 2014–2026 (1996).

    Article 

    Google Scholar 

  • Tenan, S., Tavecchia, G., Oro, D. & Pradel, R. Assessing the effect of density on population growth when modeling individual encounter data. Ecology 100, e02595 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Arditi, R., Bersier, L. & Rohr, R. P. The perfect mixing paradox and the logistic equation: Verhulst vs. Lotka. Ecosphere 7, e01599 (2016).

    Article 

    Google Scholar 

  • Cortés, E. Perspectives on the intrinsic rate of population growth. Meth. Ecol. Evol. 7, 1136–1145 (2016).

    Article 

    Google Scholar 

  • Smith, F. E. Population dynamics in Daphnia magna and a new model for population growth. Ecology 4, 651–663 (1963).

    Article 

    Google Scholar 

  • Ayala, F. J., Gilpin, M. E. & Ehrenfeld, J. G. Competition between species: Theoretical models and experimental tests. Theor. Pop. Biol. 4, 331–356 (1973).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Borlestean, A., Frost, P. C. & Murray, D. L. A mechanistic analysis of density dependence in algal population dynamics. Front. Ecol. Evol. 3, 37 (2015).

    Article 

    Google Scholar 

  • Clark, F., Brook, B. W., Delean, S., Akçakaya, H. R. & Bradshaw, C. J. A. The theta-logistic is unreliable for modelling most census data. Methods Ecol. Evol. 1, 253–262 (2010).

    Article 

    Google Scholar 

  • Chmielewski, M. W., Khatchikian, C. & Livdahl, T. Estimating the per capita rate of population change: How well do life-history surrogates perform?. Ann. Entomol. Soc. Am. 103, 734–741 (2010).

    Article 

    Google Scholar 

  • Neale, J. T. & Juliano, S. A. Finding the sweet spot: What levels of larval mortality lead to compensation or overcompensation in adult production?. Ecosphere. 10, e02855 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Armistead, J. S., Arias, J. R., Nishimura, N. & Lounibos, L. P. Interspecific larval competition between Aedes albopictus and Aedes japonicus (Diptera: Culicidae) in northern Virginia. J. Med. Entomol. 45, 629–637 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaplan, L., Kendell, D., Robertson, D., Livdahl, T. & Khatchikian, C. Aedes aegypti and Aedes albopictus in Bermuda: Extinction, invasion, invasion and extinction. Bio. Invasions. 12, 3277–3288 (2010).

    Article 

    Google Scholar 

  • Juliano, S. A. Coexistence, exclusion, or neutrality? A meta-analysis of competition between Aedes albopictus and resident mosquitoes. Isr. J. Ecol. Evol. 56, 325–351 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Murrell, E. G. & Juliano, S. A. Competitive abilities in experimental microcosms are accurately predicted by a demographic index for R*. PLoS ONE 7, e43458 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leisnham, P. T. & Juliano, S. A. Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion of a superior competitor. Oecologia 164, 221–230 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leisnham, P. T., Lounibos, L. P., O’Meara, G. F. & Juliano, S. A. Interpopulation divergence in competitive interactions of the mosquito Aedes albopictus. Ecology 90, 2405–2413 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Evans, M. V., Drake, J. M., Jones, L. & Murdock, C. C. Assessing temperature-dependent competition between two invasive mosquito species. Ecol. Appl. 31, e02334 (2021).

    PubMed 

    Google Scholar 

  • Léonard, P. M. & Juliano, S. A. Effects of leaf litter and density on fitness and population performance of the hole mosquito Aedes triseriatus. Ecol. Entomol. 20, 125–136 (1995).

    Article 

    Google Scholar 

  • Chandrasegaran, K. & Juliano, S. A. How do trait-mediated non-lethal effects of predation affect population-level performance of mosquitoes?. Front. Ecol. Evol. 7, 25 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yee, D. A., Kaufman, M. G. & Juliano, S. A. The significance of ratios of detritus types and microorganism productivity to competitive interactions between aquatic insect detritivores. J. Anim. Ecol. 76, 1105–1115 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fader, J. E. & Juliano, S. A. An empirical test of the aggregation model of coexistence and consequences for competing container-dwelling mosquitoes. Ecology 94, 478–488 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Murrell, E. G., Damal, K., Lounibos, L. P. & Juliano, S. A. Distributions of competing container mosquitoes depend on detritus types, nutrient ratios, and food availability. Ann. Entomol. Soc. Am. 104, 688–698 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Tjørve, K. M. C. & Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 12, e0178691 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Motulsky, H. & Christopoulos, A. Fitting Models to Biological Data using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting (Oxford University Press, 2004).

    MATH 

    Google Scholar 

  • Osenberg, C. W. et al. Rethinking ecological inference: density dependence in reef fishes. Ecol. Lett. 5, 715–721 (2002).

    Article 

    Google Scholar 

  • Schmitt, R. J., Holbrook, S. J. & Osenberg, C. W. Quantifying the effects of multiple processes on local abundance: A cohort approach for open populations. Ecol. Lett. 2, 294–303 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fish, D. An analysis of adult size variation within natural mosquito population. In Ecology of Mosquitoes: Proceedings of a Workshop (eds Lounibos, L. P. et al.) 419–429 (Medical Entomology Laboratory, 1985).

    Google Scholar 

  • Schneider, J. R., Chadee, D. D., Mori, A., Romero-Severson, J. & Severson, D. W. Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence. Infect. Genet. Evol. 11, 11–16 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Wormington, J. D. & Juliano, S. A. Sexually dimorphic body size and development time plasticity in Aedes mosquitoes (Diptera: Culicidae). Evol. Ecol. Res. 16, 1–12 (2014).

    Google Scholar 

  • Steinwascher, K. Competition and growth among Aedes aegypti larvae: Effects of distributing food inputs over time. PLoS ONE 15, e0234676 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barrera, R. Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes. Ecol. Entomol. 21, 117–127 (1996).

    Article 

    Google Scholar 

  • Servanty, S. et al. Assessing whether mortality is additive using marked animals: A Bayesian state-space modeling approach. Ecology 91, 1916–1923 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Wolfe, M. L. et al. Is anthropogenic cougar mortality compensated by changes in natural mortality in Utah? Insights from long-term studies. Biol. Conserv. 182, 187–196 (2015).

    Article 

    Google Scholar 

  • Kogan, M. Integrated pest management: Historical perspectives and contemporary developments. Ann. Rev. Entomol. 43, 243–270 (1998).

    CAS 
    Article 

    Google Scholar 

  • Lounibos, L. P. Invasions by insect vectors of human diseases. Ann. Rev. Entomol. 47, 233–266 (2002).

    CAS 
    Article 

    Google Scholar 

  • Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Solar-powered desalination device wins MIT $100K competition